Chemotherapy-induced functional changes of the default mode network in patients with lung cancer

  • Yujie Zhang
  • Yu-Chen Chen
  • Lanyue Hu
  • Jia You
  • Wei Gu
  • Qian Li
  • Huiyou Chen
  • Cunnan Mao
  • Xindao Yin


Previous studies have demonstrated that cognitive impairment is associated with neurophysiological changes in lung cancer following chemotherapy. This study aimed to investigate the intrinsic functional connectivity (FC) pattern within the default mode network (DMN) and its associations with cognitive impairment in patients with lung cancer revealed by resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI scans were acquired from 21 post-chemotherapy and 27 non-chemotherapy lung cancer patients and 30 healthy controls. All groups were age, gender and education-matched. The posterior cingulate cortex (PCC) was chosen as the seed region to detect the FC patterns and then determine whether these changes were related with specific cognitive performance. Compared with non-chemotherapy lung cancer patients, chemotherapy patients revealed decreased FC between the PCC and the right anterior cingulate cortex (ACC), left inferior parietal lobule (IPL), and left medial prefrontal cortex (mPFC), as well as increased FC with the left postcentral gyrus (PoCG). Relative to healthy controls, post-chemotherapy patients exhibited reduced FC between the PCC and the left ACC and left temporal lobe, as well as increased FC with the right PoCG. Moreover, the decreased FC of the PCC to bilateral ACC in post-chemotherapy patients was positively associated with reduced MoCA scores (left: r = 0.529, p = 0.029; right: r = 0.577, p = 0.015). The current study mainly demonstrated reduced resting-state FC pattern within the DMN regions that was linked with impaired cognitive function in lung cancer patients after chemotherapy. These findings illustrated the potential role of the DMN in lung cancer patients that will provide novel insight into the underlying neuropathological mechanisms in chemotherapy-induced cognitive impairment.


Lung cancer Functional connectivity Cognitive impairment Default mode network Resting-state fMRI 



This work was supported by a grant from the National Natural Science Foundation of China (No. 81601477), Jiangsu Provincial Special Program of Medical Science (No. BE2017614), Youth Medical Talents of Jiangsu Province (No. QNRC2016062), 14th “Six Talent Peaks” Project of Jiangsu Province (No. YY-079), and Nanjing Outstanding Youth Fund (No. JQX17006).

Compliance with ethical standards

Conflict of interests

The authors declare that there is no potential conflict of interests regarding the publication of this paper.

Ethical approval

The current study was approved by the Research Ethics Committee of the Nanjing Medical University.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Agrawal, V., Coroller, T. P., Hou, Y., Lee, S. W., Romano, J. L., Baldini, E. H., Chen, A. B., Jackman, D. M., Kozono, D., Swanson, S. J., Wee, J. O., Aerts, H. J. W. L., & Mak, R. H. (2016). Radiologic-pathologic correlation of response to chemoradiation in resectable locally advanced NSCLC. Lung Cancer, 102, 1–8.CrossRefGoogle Scholar
  2. Ahles, T. A., & Saykin, A. J. (2002). Breast cancer chemotherapy-related cognitive dysfunction. Clinical Breast Cancer, 3(3), S84–S90.CrossRefGoogle Scholar
  3. Arriagada, R., Le Chevalier, T., Borie, F., Riviere, A., Chomy, P., Monnet, I., et al. (1995). Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Journal of the National Cancer Institute, 87(3), 183–190.CrossRefGoogle Scholar
  4. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851. Scholar
  5. Bromis, K., Gkiatis, K., Karanasiou, I., Matsopoulos, G., Karavasilis, E., Papathanasiou, M., et al. (2017). Altered brain functional connectivity in small-cell lung Cancer patients after chemotherapy treatment: A resting-state fMRI study. Computational and Mathematical Methods in Medicine, 1403940(10), 17.Google Scholar
  6. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.CrossRefGoogle Scholar
  7. Cees De Groot, J., De Leeuw, F.E., Oudkerk, M., Van Gijn, J., Hofman, A., Jolles, J., et al. (2000). Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 47(2), 145–151.Google Scholar
  8. Correa, D., Root, J., Kryza-Lacombe, M., Mehta, M., Karimi, S., Hensley, M., et al. (2017). Brain structure and function in patients with ovarian cancer treated with first-line chemotherapy: A pilot study. Brain Imaging and Behavior, 11(6), 1652–1663.CrossRefGoogle Scholar
  9. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.CrossRefGoogle Scholar
  10. de Groot, J.C., De Leeuw, F.-E., Oudkerk, M., Hofman, A., Jolles, J., and Breteler, M. (2001). Cerebral white matter lesions and subjective cognitive dysfunction The Rotterdam Scan Study. Neurology, 56(11), 1539–1545.Google Scholar
  11. Deprez, S., Amant, F., Yigit, R., Porke, K., Verhoeven, J., Van den Stock, J., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32(3), 480–493.CrossRefGoogle Scholar
  12. Ettinger, D. S., Wood, D. E., Aisner, D. L., Akerley, W., Bauman, J., Chirieac, L. R., D'Amico, T. A., DeCamp, M. M., Dilling, T. J., Dobelbower, M., Doebele, R. C., Govindan, R., Gubens, M. A., Hennon, M., Horn, L., Komaki, R., Lackner, R. P., Lanuti, M., Leal, T. A., Leisch, L. J., Lilenbaum, R., Lin, J., Loo, B. W., Jr., Martins, R., Otterson, G. A., Reckamp, K., Riely, G. J., Schild, S. E., Shapiro, T. A., Stevenson, J., Swanson, S. J., Tauer, K., Yang, S. C., Gregory, K., & Hughes, M. (2017). Non-small cell lung Cancer, version 5.2017, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 15(4), 504–535.CrossRefGoogle Scholar
  13. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711. Scholar
  14. Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage, 42(3), 1178–1184. Scholar
  15. Galea, M., & Woodward, M. (2005). Mini-mental state examination (MMSE). The Australian Journal of Physiotherapy, 51(3), 198.CrossRefGoogle Scholar
  16. Grosshans, D. R., Meyers, C. A., Allen, P. K., Davenport, S. D., & Komaki, R. (2008). Neurocognitive function in patients with small cell lung cancer : Effect of prophylactic cranial irradiation. Cancer, 112(3), 589–595.CrossRefGoogle Scholar
  17. Hong, Q. Y., Wu, G. M., Qian, G. S., Hu, C. P., Zhou, J. Y., Chen, L. A., Li, W. M., Li, S. Y., Wang, K., Wang, Q., Zhang, X. J., Li, J., Gong, X., Bai, C. X., & on behalf of the Lung Cancer Group of the Chinese Thoracic Society; Chinese Alliance Against Lung Cancer. (2015). Prevention and management of lung cancer in China. Cancer, 121(Suppl 17), 3080–3088. Scholar
  18. Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., Wada, N., Imoto, S., Murakami, K., Uchitomi, Y., & and The Breast Cancer Survivors' Brain MRI Database Group. (2007). Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109(1), 146–156. Scholar
  19. Johnson, B. E., Grayson, J., Makuch, R. W., Linnoila, R. I., Anderson, M. J., Cohen, M. H., Glatstein, E., Minna, J. D., & Ihde, D. C. (1990). Ten-year survival of patients with small-cell lung cancer treated with combination chemotherapy with or without irradiation. Journal of Clinical Oncology, 8(3), 396–401.CrossRefGoogle Scholar
  20. Kaasa, S., Olsnes, B. T., Thorud, E., & Host, H. (1988). Reduced short-term neuropsychological performance in patients with nonsmall-cell lung cancer treated with cisplatin and etoposide. Antibiotics and Chemotherapy (1971), 41, 226–231.CrossRefGoogle Scholar
  21. Kam, J. W., Boyd, L. A., Hsu, C. L., Liu-Ambrose, T., Handy, T. C., Lim, H. J., et al. (2016). Altered neural activation during prepotent response inhibition in breast cancer survivors treated with chemotherapy: An fMRI study. Brain Imaging and Behavior, 10(3), 840–848.CrossRefGoogle Scholar
  22. Kesler, S. R. (2014). Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiology of Aging, 35(2), 15.Google Scholar
  23. Kesler, S. R., Wefel, J. S., Hosseini, S. H., Cheung, M., Watson, C. L., & Hoeft, F. (2013). Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proceedings of the National Academy of Sciences, 110(28), 11600–11605.CrossRefGoogle Scholar
  24. Kesler, S. R., Adams, M., Packer, M., Rao, V., Henneghan, A. M., Blayney, D. W., & Palesh, O. (2017). Disrupted brain network functional dynamics and hyper-correlation of structural and functional connectome topology in patients with breast cancer prior to treatment. Brain and Behavior, 7(3), e00643.CrossRefGoogle Scholar
  25. Kim, S. S., Gomez-Ramirez, M., Thakur, P. H., & Hsiao, S. S. (2015). Multimodal interactions between proprioceptive and cutaneous signals in primary somatosensory cortex. Neuron, 86(2), 555–566.CrossRefGoogle Scholar
  26. Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872.CrossRefGoogle Scholar
  27. Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2), 119–132. Scholar
  28. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233–1239.CrossRefGoogle Scholar
  29. Meyers, C. A., Byrne, K. S., & Komaki, R. (1995). Cognitive deficits in patients with small cell lung cancer before and after chemotherapy. Lung Cancer, 12(3), 231–235.CrossRefGoogle Scholar
  30. Miao, H., Chen, X., Yan, Y., He, X., Hu, S., Kong, J., Wu, M., Wei, Y., Zhou, Y., Wang, L., Wang, K., & Qiu, B. (2016). Functional connectivity change of brain default mode network in breast cancer patients after chemotherapy. Neuroradiology, 58(9), 921–928.CrossRefGoogle Scholar
  31. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., & Adjei, A. A. (2008). Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clinic Proceedings, 83(5), 584–594.Google Scholar
  32. Nanavaty, P., Alvarez, M. S., & Alberts, W. M. (2014). Lung cancer screening: Advantages, controversies, and applications. Cancer Control, 21(1), 9–14. Scholar
  33. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.CrossRefGoogle Scholar
  34. Pomykala, K. L., de Ruiter, M. B., Deprez, S., McDonald, B. C., & Silverman, D. H. (2013). Integrating imaging findings in evaluating the post-chemotherapy brain. Brain Imaging and Behavior, 7(4), 436–452. Scholar
  35. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.CrossRefGoogle Scholar
  36. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.CrossRefGoogle Scholar
  37. Rosazza, C., & Minati, L. (2011). Resting-state brain networks: Literature review and clinical applications. Neurological Sciences, 32(5), 773–785.CrossRefGoogle Scholar
  38. Simo, M., Root, J. C., Vaquero, L., Ripolles, P., Jove, J., Ahles, T., et al. (2015). Cognitive and brain structural changes in a lung cancer population. Journal of Thoracic Oncology, 10(1), 38–45.CrossRefGoogle Scholar
  39. Simo, M., Vaquero, L., Ripolles, P., Gurtubay-Antolin, A., Jove, J., Navarro, A., et al. (2016). Longitudinal brain changes associated with prophylactic cranial irradiation in lung Cancer. Journal of Thoracic Oncology, 11(4), 475–486.CrossRefGoogle Scholar
  40. Simo, M., Rifa-Ros, X., Vaquero, L., Ripolles, P., Cayuela, N., Jove, J., et al. (2018). Brain functional connectivity in lung cancer population: An exploratory study. Brain Imaging and Behavior, 12(2), 369–382.CrossRefGoogle Scholar
  41. Tao, L., Lin, H., Yan, Y., Xu, X., Wang, L., Zhang, J., & Yu, Y. (2017). Impairment of the executive function in breast cancer patients receiving chemotherapy treatment: A functional MRI study. European Journal of Cancer Care, 26(6), e12553.CrossRefGoogle Scholar
  42. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65(2), 87–108.Google Scholar
  43. Wahlund, L.-O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M., Sjögren, M., et al. (2001). A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke, 32(6), 1318–1322.Google Scholar
  44. Wang, J., Zuo, X., & He, Y. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16.PubMedPubMedCentralGoogle Scholar
  45. Wefel, J. S., Vardy, J., Ahles, T., & Schagen, S. B. (2011). International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. The Lancet Oncology, 12(7), 703–708.CrossRefGoogle Scholar
  46. Welzel, T., Niethammer, A., Mende, U., Heiland, S., Wenz, F., Debus, J., & Krempien, R. (2008). Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer: First results of a prospective study. AJNR. American Journal of Neuroradiology, 29(2), 379–383.CrossRefGoogle Scholar
  47. Whitney, K. A., Lysaker, P. H., Steiner, A. R., Hook, J. N., Estes, D. D., & Hanna, N. H. (2008). Is"chemobrain" a transient state? A prospective pilot study among persons with non-small cell lung cancer. The Journal of Supportive Oncology, 6(7), 313–321.PubMedGoogle Scholar
  48. Xuan, H., Chen Gan, W. L., Huang, Z., Wang, L., Jia, Q., Chen, Z., et al. (2017). Altered network efficiency of functional brain networks in patients with breast cancer after chemotherapy. Oncotarget, 8(62), 105648.CrossRefGoogle Scholar
  49. Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339–351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
  2. 2.Department of Respiratory Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations