Advertisement

Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: assessment with whole-brain magnetic resonance spectroscopy

  • Christina Mueller
  • Joanne C. Lin
  • Sulaiman Sheriff
  • Andrew A. Maudsley
  • Jarred W. YoungerEmail author
ORIGINAL RESEARCH

Abstract

Previous neuroimaging studies have detected markers of neuroinflammation in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Magnetic Resonance Spectroscopy (MRS) is suitable for measuring brain metabolites linked to inflammation, but has only been applied to discrete regions of interest in ME/CFS. We extended the MRS analysis of ME/CFS by capturing multi-voxel information across the entire brain. Additionally, we tested whether MRS-derived brain temperature is elevated in ME/CFS patients. Fifteen women with ME/CFS and 15 age- and gender-matched healthy controls completed fatigue and mood symptom questionnaires and whole-brain echo-planar spectroscopic imaging (EPSI). Choline (CHO), myo-inositol (MI), lactate (LAC), and N-acetylaspartate (NAA) were quantified in 47 regions, expressed as ratios over creatine (CR), and compared between ME/CFS patients and controls using independent-samples t-tests. Brain temperature was similarly tested between groups. Significant between-group differences were detected in several regions, most notably elevated CHO/CR in the left anterior cingulate (p < 0.001). Metabolite ratios in seven regions were correlated with fatigue (p < 0.05). ME/CFS patients had increased temperature in the right insula, putamen, frontal cortex, thalamus, and the cerebellum (all p < 0.05), which was not attributable to increased body temperature or differences in cerebral perfusion. Brain temperature increases converged with elevated LAC/CR in the right insula, right thalamus, and cerebellum (all p < 0.05). We report metabolite and temperature abnormalities in ME/CFS patients in widely distributed regions. Our findings may indicate that ME/CFS involves neuroinflammation.

Keywords

Neuroinflammation Chronic fatigue syndrome Magnetic resonance spectroscopy Anterior cingulate Brain temperature Metabolites 

Notes

Funding

This work was supported by the Solve ME/CFS Initiative [Ramsay Award program]; and the National Institutes of Health [grant number EB016064]. Participant recruitment and Dr. Younger’s effort was supported by NIH-NIAID [grant number AI107655]. The sponsors had no involvement in the study design; in the collection, analysis or interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_29_MOESM1_ESM.pdf (15 kb)
ESM 1 (PDF 15 kb)
11682_2018_29_MOESM2_ESM.pdf (229 kb)
ESM 2 (PDF 228 kb)
11682_2018_29_MOESM3_ESM.pdf (113 kb)
ESM 3 (PDF 113 kb)

References

  1. Alam, M. M., Lee, J., & Lee, S. Y. (2017). Recent Progress in the development of TSPO PET ligands for Neuroinflammation imaging in neurological diseases. Nuclear Medicine and Molecular Imaging, 51(4), 283–296.  https://doi.org/10.1007/s13139-017-0475-8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson, A. M., Fennema-Notestine, C., Umlauf, A., Taylor, M. J., Clifford, D. B., Marra, C. M., et al. (2015). CSF Biomarkers of Monocyte Activation and Chemotaxis correlate with Magnetic Resonance Spectroscopy Metabolites during Chronic HIV Disease. Journal of Neurovirology, 21(5), 559–567.  https://doi.org/10.1007/s13365-015-0359-6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2010) Non-linear registration, aka spatial normalisation. FMRIB technical report TR07JA2.Google Scholar
  4. Bernitsas, E., Yarraguntla, K., Bao, F., Sood, R., Santiago-Martinez, C., Govindan, R., et al. (2017). Structural and neuronal integrity measures of fatigue severity in multiple sclerosis. Brain Sciences, 7(8).  https://doi.org/10.3390/brainsci7080102.
  5. Bitsch, A., Bruhn, H., Vougioukas, V., Stringaris, A., Lassmann, H., Frahm, J., & Bruck, W. (1999). Inflammatory CNS demyelination: Histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR. American Journal of Neuroradiology, 20(9), 1619–1627.PubMedGoogle Scholar
  6. Bjartmar, C., Battistuta, J., Terada, N., Dupree, E., & Trapp, B. D. (2002). N-acetylaspartate is an axon-specific marker of mature white matter in vivo: A biochemical and immunohistochemical study on the rat optic nerve. Annals of Neurology, 51(1), 51–58.CrossRefGoogle Scholar
  7. Boissoneault, J., Sevel, L., Robinson, M. E., & Staud, R. (2018). Functional brain connectivity of remembered fatigue or happiness in healthy adults: Use of arterial spin labeling. Journal of Clinical and Experimental Neuropsychology, 40(3), 224–233.  https://doi.org/10.1080/13803395.2017.1329407.CrossRefPubMedGoogle Scholar
  8. Brooks, J. C., Roberts, N., Whitehouse, G., & Majeed, T. (2000). Proton magnetic resonance spectroscopy and morphometry of the hippocampus in chronic fatigue syndrome. The British Journal of Radiology, 73(875), 1206–1208.  https://doi.org/10.1259/bjr.73.875.11144799.CrossRefPubMedGoogle Scholar
  9. Capuron, L., Pagnoni, G., Demetrashvili, M., Woolwine, B. J., Nemeroff, C. B., Berns, G. S., & Miller, A. H. (2005). Anterior cingulate activation and error processing during interferon-alpha treatment. Biological Psychiatry, 58(3), 190–196.  https://doi.org/10.1016/j.biopsych.2005.03.033.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castro-Marrero, J., Cordero, M. D., Saez-Francas, N., Jimenez-Gutierrez, C., Aguilar-Montilla, F. J., Aliste, L., & Alegre-Martin, J. (2013). Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxidants & Redox Signaling, 19(15), 1855–1860.  https://doi.org/10.1089/ars.2013.5346.CrossRefGoogle Scholar
  11. Chang, L., Munsaka, S. M., Kraft-Terry, S., & Ernst, T. (2013). Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. Journal of Neuroimmune Pharmacology, 8(3), 576–593.  https://doi.org/10.1007/s11481-013-9460-x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chaudhuri, A., Condon, B. R., Gow, J. W., Brennan, D., & Hadley, D. M. (2003). Proton magnetic resonance spectroscopy of basal ganglia in chronic fatigue syndrome. Neuroreport, 14(2), 225–228.  https://doi.org/10.1097/01.wnr.0000054960.21656.64.CrossRefPubMedGoogle Scholar
  13. Dienel, G. A. (2012). Brain lactate metabolism: The discoveries and the controversies. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1107–1138.  https://doi.org/10.1038/jcbfm.2011.175.CrossRefPubMedGoogle Scholar
  14. Dupont, A. C., Largeau, B., Santiago Ribeiro, M. J., Guilloteau, D., Tronel, C., & Arlicot, N. (2017). Translocator Protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases. International Journal of Molecular Sciences, 18(4).  https://doi.org/10.3390/ijms18040785.
  15. Ebel, A., & Maudsley, A. A. (2003). Improved spectral quality for 3D MR spectroscopic imaging using a high spatial resolution acquisition strategy. Magnetic Resonance Imaging, 21(2), 113–120.CrossRefGoogle Scholar
  16. El Ghazi, I., Sheng, W. S., Hu, S., Reilly, B. G., Lokensgard, J. R., Rock, R. B., et al. (2010). Changes in the NMR metabolic profile of human microglial cells exposed to lipopolysaccharide or morphine. Journal of Neuroimmune Pharmacology, 5(4), 574–581.  https://doi.org/10.1007/s11481-010-9197-8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ferrero, K., Silver, M., Cocchetto, A., Masliah, E., & Langford, D. (2017). CNS findings in chronic fatigue syndrome and a neuropathological case report. Journal of Investigative Medicine, 65(6), 974–983.  https://doi.org/10.1136/jim-2016-000390.CrossRefPubMedGoogle Scholar
  18. Finkelmeyer, A., He, J., Maclachlan, L., Watson, S., Gallagher, P., Newton, J. L., & Blamire, A. M. (2018). Grey and white matter differences in chronic fatigue syndrome - a voxel-based morphometry study. Neuroimage Clin, 17, 24–30.  https://doi.org/10.1016/j.nicl.2017.09.024.CrossRefPubMedGoogle Scholar
  19. Fukuda, K., Straus, S. E., Hickie, I., Sharpe, M. C., Dobbins, J. G., & Komaroff, A. (1994). The chronic fatigue syndrome: A comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Annals of Internal Medicine, 121(12), 953–959.CrossRefGoogle Scholar
  20. Glunde, K., Jie, C., & Bhujwalla, Z. M. (2004). Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Research, 64(12), 4270–4276.  https://doi.org/10.1158/0008-5472.Can-03-3829.CrossRefPubMedGoogle Scholar
  21. Goni, M., Basu, N., Murray, A. D., & Waiter, G. D. (2018). Neural indicators of fatigue in chronic diseases: A systematic review of MRI studies. Diagnostics (Basel), 8(3).  https://doi.org/10.3390/diagnostics8030042.
  22. Grover, V. P., Pavese, N., Koh, S. B., Wylezinska, M., Saxby, B. K., Gerhard, A., et al. (2012). Cerebral microglial activation in patients with hepatitis C: In vivo evidence of neuroinflammation. Journal of Viral Hepatitis, 19(2), e89–e96.  https://doi.org/10.1111/j.1365-2893.2011.01510.x.CrossRefPubMedGoogle Scholar
  23. Haroon, E., Woolwine, B. J., Chen, X., Pace, T. W., Parekh, S., Spivey, J. R., et al. (2014). IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology, 39(7), 1777–1785.  https://doi.org/10.1038/npp.2014.25.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66(5), 407–414.  https://doi.org/10.1016/j.biopsych.2009.03.015.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hornig, M., Gottschalk, C. G., Eddy, M. L., Che, X., Ukaigwe, J. E., Peterson, D. L., & Lipkin, W. I. (2017). Immune network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome with atypical and classical presentations. Translational Psychiatry, 7(4), e1080.  https://doi.org/10.1038/tp.2017.44.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hou, L. J., Song, Z., Pan, Z. J., Cheng, J. L., Yu, Y., & Wang, J. (2016). Decreased activation of subcortical brain areas in the motor fatigue state: An fMRI study. Frontiers in Psychology, 7, 1154.  https://doi.org/10.3389/fpsyg.2016.01154.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jansen, J. F., Backes, W. H., Nicolay, K., & Kooi, M. E. (2006). 1H MR spectroscopy of the brain: Absolute quantification of metabolites. Radiology, 240(2), 318–332.  https://doi.org/10.1148/radiol.2402050314.CrossRefPubMedGoogle Scholar
  28. Jason, L. A., Evans, M., Porter, N., Brown, M., Brown, A., Hunnell, J., et al. (2010). The development of a revised Canadian Myalgic encephalomyelitis chronic fatigue syndrome case definition. American Journal of Biochemistry and Biotechnology, 6(2), 120–135.CrossRefGoogle Scholar
  29. Karaszewski, B., Carpenter, T. K., Thomas, R. G., Armitage, P. A., Lymer, G. K., Marshall, I., . . . Wardlaw, J. M. (2013). Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 33(7), 1083–1089. doi: https://doi.org/10.1038/jcbfm.2013.52.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kirov, I. I., Liu, S., Tal, A., Wu, W. E., Davitz, M. S., Babb, J. S., et al. (2017). Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging. Human Brain Mapping, 38(8), 4047–4063.  https://doi.org/10.1002/hbm.23647.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kocevar, G., Stamile, C., Hannoun, S., Roch, J. A., Durand-Dubief, F., Vukusic, S., et al. (2018). Weekly follow up of acute lesions in three early multiple sclerosis patients using MR spectroscopy and diffusion. Journal of Neuroradiology, 45(2), 108–113.  https://doi.org/10.1016/j.neurad.2017.06.010.CrossRefGoogle Scholar
  32. Komaroff, A. L. (2017). Inflammation correlates with symptoms in chronic fatigue syndrome. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8914–8916.  https://doi.org/10.1073/pnas.1712475114.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Krupp, L. B., LaRocca, N. G., Muir-Nash, J., & Steinberg, A. D. (1989). The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology, 46(10), 1121–1123.CrossRefGoogle Scholar
  34. Lawson, N., Hsieh, C. H., March, D., & Wang, X. (2016). Elevated energy production in chronic fatigue syndrome patients. J Nat Sci, 2(10).Google Scholar
  35. Lin, J. C., & Gant, N. (2013). The biochemistry of choline. In C. J. Stagg & D. L. Rothman (Eds.), Magnetic resonance spectroscopy: Tools for neuroscience research and emerging clinical applications (1st ed., pp. 104–110). Amsterdam: Elsevier.Google Scholar
  36. MacHale, S. M., Lawrie, S. M., Cavanagh, J. T., Glabus, M. F., Murray, C. L., Goodwin, G. M., & Ebmeier, K. P. (2000). Cerebral perfusion in chronic fatigue syndrome and depression. The British Journal of Psychiatry, 176, 550–556.CrossRefGoogle Scholar
  37. Mathew, S. J., Mao, X., Keegan, K. A., Levine, S. M., Smith, E. L., Heier, L. A., et al. (2009). Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: An in vivo 3.0 T (1)H MRS imaging study. NMR in Biomedicine, 22(3), 251–258.  https://doi.org/10.1002/nbm.1315.CrossRefPubMedGoogle Scholar
  38. Maudsley, A. A., Domenig, C., Govind, V., Darkazanli, A., Studholme, C., Arheart, K., & Bloomer, C. (2009). Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magnetic Resonance in Medicine, 61(3), 548–559.  https://doi.org/10.1002/mrm.21875.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maudsley, A. A., Goryawala, M. Z., & Sheriff, S. (2017). Effects of tissue susceptibility on brain temperature mapping. Neuroimage, 146, 1093–1101.  https://doi.org/10.1016/j.neuroimage.2016.09.062.CrossRefPubMedGoogle Scholar
  40. McCusker, R. H., & Kelley, K. W. (2013). Immune-neural connections: How the immune system's response to infectious agents influences behavior. The Journal of Experimental Biology, 216(Pt 1), 84–98.  https://doi.org/10.1242/jeb.073411. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moshkin, M. P., Akulov, A. E., Petrovski, D. V., Saik, O. V., Petrovskiy, E. D., Savelov, A. A., & Koptyug, I. V. (2014). Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-d-glucose and lipopolysaccharides. NMR in Biomedicine, 27(4), 399–405.  https://doi.org/10.1002/nbm.3074.CrossRefPubMedGoogle Scholar
  42. Murrough, J. W., Mao, X., Collins, K. A., Kelly, C., Andrade, G., Nestadt, P., et al. (2010). Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: Comparison with major depressive disorder. NMR in Biomedicine, 23(6), 643–650.  https://doi.org/10.1002/nbm.1512.CrossRefPubMedGoogle Scholar
  43. Myhill, S., Booth, N. E., & McLaren-Howard, J. (2013). Targeting mitochondrial dysfunction in the treatment of Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) - a clinical audit. International Journal of Clinical and Experimental Medicine, 6(1), 1–15.PubMedGoogle Scholar
  44. Nakatomi, Y., Mizuno, K., Ishii, A., Wada, Y., Tanaka, M., Tazawa, S., et al. (2014). Neuroinflammation in patients with chronic fatigue syndrome/Myalgic encephalomyelitis: An (1)(1)C-(R)-PK11195 PET study. Journal of Nuclear Medicine, 55(6), 945–950.  https://doi.org/10.2967/jnumed.113.131045.CrossRefPubMedGoogle Scholar
  45. Natelson, B. H., Weaver, S. A., Tseng, C. L., & Ottenweller, J. E. (2005). Spinal fluid abnormalities in patients with chronic fatigue syndrome. Clinical and Diagnostic Laboratory Immunology, 12(1), 52–55.  https://doi.org/10.1128/cdli.12.1.52-55.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Natelson, B. H., Mao, X., Stegner, A. J., Lange, G., Vu, D., Blate, M., et al. (2017a). Multimodal and simultaneous assessments of brain and spinal fluid abnormalities in chronic fatigue syndrome and the effects of psychiatric comorbidity. Journal of the Neurological Sciences, 375, 411–416.  https://doi.org/10.1016/j.jns.2017.02.046.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Natelson, B. H., Vu, D., Coplan, J. D., Mao, X., Blate, M., Kang, G., et al. (2017b). Elevations of ventricular lactate levels occur in both chronic fatigue syndrome and fibromyalgia. Fatigue, 5(1), 15–20.  https://doi.org/10.1080/21641846.2017.1280114.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Omori, M., Pearce, J., Komoroski, R. A., Griffin, W. S. T., Mrak, R. E., Husain, M. M., & Karson, C. N. (1997). In vitro 1H-magnetic resonance spectroscopy of postmortem brains with schizophrenia. Biological Psychiatry, 42(5), 359–366.  https://doi.org/10.1016/S0006-3223(96)00409-X.CrossRefPubMedGoogle Scholar
  49. Orihuela, R., McPherson, C. A., & Harry, G. J. (2016). Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology, 173(4), 649–665.  https://doi.org/10.1111/bph.13139.CrossRefPubMedGoogle Scholar
  50. Peterson, D., Brenu, E. W., Gottschalk, G., Ramos, S., Nguyen, T., Staines, D., & Marshall-Gradisnik, S. (2015). Cytokines in the cerebrospinal fluids of patients with chronic fatigue syndrome/myalgic encephalomyelitis. Mediators of Inflammation, 2015, 929720.  https://doi.org/10.1155/2015/929720.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Poon, D. C., Ho, Y. S., Chiu, K., Wong, H. L., & Chang, R. C. (2015). Sickness: From the focus on cytokines, prostaglandins, and complement factors to the perspectives of neurons. Neuroscience and Biobehavioral Reviews, 57, 30–45.  https://doi.org/10.1016/j.neubiorev.2015.07.015.CrossRefPubMedGoogle Scholar
  52. Puri, B. K., Counsell, S. J., Zaman, R., Main, J., Collins, A. G., Hajnal, J. V., & Davey, N. J. (2002). Relative increase in choline in the occipital cortex in chronic fatigue syndrome. Acta Psychiatrica Scandinavica, 106(3), 224–226.CrossRefGoogle Scholar
  53. Reeves, W. C., Wagner, D., Nisenbaum, R., Jones, J. F., Gurbaxani, B., Solomon, L., et al. (2005). Chronic fatigue syndrome--a clinically empirical approach to its definition and study. BMC Medicine, 3, 19.  https://doi.org/10.1186/1741-7015-3-19.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rimbaut, S., Van Gutte, C., Van Brabander, L., & Vanden Bossche, L. (2016). Chronic fatigue syndrome - an update. Acta Clinica Belgica, 1–8.  https://doi.org/10.1080/17843286.2016.1196862.
  55. Rumana, C. S., Gopinath, S. P., Uzura, M., Valadka, A. B., & Robertson, C. S. (1998). Brain temperature exceeds systemic temperature in head-injured patients. Critical Care Medicine, 26(3), 562–567.CrossRefGoogle Scholar
  56. Shungu, D. C., Weiduschat, N., Murrough, J. W., Mao, X., Pillemer, S., Dyke, J. P., et al. (2012). Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR in Biomedicine, 25(9), 1073–1087.  https://doi.org/10.1002/nbm.2772.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stern, A. F. (2014). The hospital anxiety and depression scale. Occupational Medicine (London), 64(5), 393–394.  https://doi.org/10.1093/occmed/kqu024.CrossRefGoogle Scholar
  58. Tomoda, A., Miike, T., Yamada, E., Honda, H., Moroi, T., Ogawa, M., et al. (2000). Chronic fatigue syndrome in childhood. Brain Dev, 22(1), 60–64.CrossRefGoogle Scholar
  59. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.  https://doi.org/10.1006/nimg.2001.0978.CrossRefPubMedGoogle Scholar
  60. Wang, Z., Aguirre, G. K., Rao, H., Wang, J., Fernandez-Seara, M. A., Childress, A. R., & Detre, J. A. (2008). Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Resonance Imaging, 26(2), 261–269.  https://doi.org/10.1016/j.mri.2007.07.003.CrossRefPubMedGoogle Scholar
  61. Zeineh, M. M., Kang, J., Atlas, S. W., Raman, M. M., Reiss, A. L., Norris, J. L., et al. (2015). Right arcuate fasciculus abnormality in chronic fatigue syndrome. Radiology, 274(2), 517–526.  https://doi.org/10.1148/radiol.14141079.CrossRefPubMedGoogle Scholar
  62. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.  https://doi.org/10.1109/42.906424.CrossRefPubMedGoogle Scholar
  63. Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christina Mueller
    • 1
  • Joanne C. Lin
    • 1
  • Sulaiman Sheriff
    • 2
  • Andrew A. Maudsley
    • 2
  • Jarred W. Younger
    • 1
    Email author
  1. 1.Department of PsychologyThe University of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Radiology, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations