Advertisement

Reduced gray matter volume in cognitively preserved COMT 158Val/Val Parkinson’s disease patients and its association with cognitive decline

  • Frederic Sampedro
  • Juan Marín-Lahoz
  • Saul Martínez-Horta
  • Javier Pagonabarraga
  • Jaime KulisevskyEmail author
BRIEF COMMUNICATION

Abstract

The COMT Val158Met polymorphism has recently been identified as a predictor for cognitive decline in Parkinson’s disease (PD). However, it remains unknown whether an early brain structural compromise could be involved in this clinical association. Here, in a cohort of 120 cognitively preserved de novo PD patients from the Parkinson’s Progression Markers Initiative (PPMI) database, we found a widespread reduction in cerebral gray matter volume (GMV) in patients harboring the Val/Val genotype. The atrophic pattern included fronto-subcortical and parieto-temporal territories. Importantly, the GMV at some of the identified regions was associated with cognitive decline in a 4-year follow-up period. These findings suggest that GMV compromise in the early stages of PD may be a predisposing factor for cognitive decline of COMT Val/Val homozygotes.

Keywords

Parkinson’s disease COMT MRI Cognitive decline 

Notes

Acknowledgements

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org.

PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbvie, Avid Radiopharmaceuticals, Biogen Idec, BioLegend, Bristol-Myers Squibb, Eli Lilly & Co., GE Healthcare, Genentech, GlaxoSmithKline, Lundbeck, Merck, MesoScale Discovery, Pfizer, Piramal, Roche, Sanofi Genzyme, Servier, Takeda, Teva, and UCB.

Funding

This work was partially supported by CERCA and CIBERNED funding, and grants from la Marató de TV3 (2014/U/477 and 20142910) and Fondo de Investigaciones Sanitarias del Ministerio de Sanidad y Consumo (PI15/00962 and PI14/02058).

Compliance with ethical standards

Conflict of interest

Frederic Sampedro declares that he has no conflict of interest. Juan Marín-Lahoz declares that he has no conflict of interest. Saul Martínez-Horta declares that he has no conflict of interest. Javier Pagonabarraga declares that he has no conflict of interest. Jaime Kulisevsky declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

11682_2018_22_Fig3_ESM.png (1 mb)
Figure S1

Reduced gray matter volume of COMT Val/Val HC subjects with respect to HC Met carriers (p < 0.005 uncorrected, minimum cluster size of 100 voxels). No significant regions of increased gray matter volume were obtained. No clusters survived p < 0.05 FWE cluster-level correction. (PNG 1072 kb)

11682_2018_22_MOESM1_ESM.tif (2.5 mb)
High resolution image (TIF 2527 kb)

References

  1. Aarsland, D., Creese, B., Politis, M., Chaudhuri, K. R., Ffytche, D. H., Weintraub, D., & Ballard, C. (2017). Cognitive decline in Parkinson disease. Nature Reviews. Neurology, 13(4), 217–231.  https://doi.org/10.1038/nrneurol.2017.27.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bäckström, D., Eriksson Domellöf, M., Granåsen, G., Linder, J., Mayans, S., Elgh, E., et al. (2018). Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson’s disease. Acta Neurologica Scandinavica, 137(1), 91–98.  https://doi.org/10.1111/ane.12812.CrossRefPubMedGoogle Scholar
  3. Caspell-Garcia, C., Simuni, T., Tosun-Turgut, D., Wu, I.-W., Zhang, Y., Nalls, M., et al. (2017). Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PLoS One, 12(5), e0175674.  https://doi.org/10.1371/journal.pone.0175674.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75(5), 807–821.  https://doi.org/10.1086/425589.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Choi, H., Cheon, G. J., Kim, H.-J., Choi, S. H., Kim, Y.-I., Kang, K. W., et al. (2016). Gray matter correlates of dopaminergic degeneration in Parkinson’s disease: A hybrid PET/MR study using 18 F-FP-CIT: Gray matter correlates of dopaminergic degeneration. Human Brain Mapping, 37(5), 1710–1721.  https://doi.org/10.1002/hbm.23130.CrossRefPubMedGoogle Scholar
  6. Erkoreka, L., Zumárraga, M., Macías, I., & Angel Gonzalez-Torres, M. (2018). The COMT Val158Met polymorphism exerts a common influence on avoidant attachment and inhibited personality, with a pattern of positive heterosis. Psychiatry Research, 262, 345–347.  https://doi.org/10.1016/j.psychres.2017.07.053.CrossRefPubMedGoogle Scholar
  7. Fagan, E. S., & Pihlstrøm, L. (2017). Genetic risk factors for cognitive decline in Parkinson’s disease: A review of the literature. European Journal of Neurology, 24(4), 561–e20.  https://doi.org/10.1111/ene.13258.CrossRefPubMedGoogle Scholar
  8. Falcon, C., Tucholka, A., Monté-Rubio, G. C., Cacciaglia, R., Operto, G., Rami, L., et al. (2018). Longitudinal structural cerebral changes related to core CSF biomarkers in preclinical Alzheimer’s disease: A study of two independent datasets. NeuroImage. Clinical, 19, 190–201.  https://doi.org/10.1016/j.nicl.2018.04.016.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2013). Cognitive impairment in Parkinson’s disease: The dual syndrome hypothesis. Neuro-Degenerative Diseases, 11(2), 79–92.  https://doi.org/10.1159/000341998.CrossRefPubMedGoogle Scholar
  10. Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society task force guidelines. Movement Disorders: Official Journal of the Movement Disorder Society, 27(3), 349–356.  https://doi.org/10.1002/mds.24893.CrossRefGoogle Scholar
  11. Maekawa, T., Sato, N., Ota, M., Sugiyama, A., Sone, D., Enokizono, M., et al. (2017). Correlations between dopamine transporter density measured by 123I-FP-CIT SPECT and regional gray matter volume in Parkinson’s disease. Japanese Journal of Radiology, 35(12), 755–759.  https://doi.org/10.1007/s11604-017-0694-z.CrossRefPubMedGoogle Scholar
  12. Mahlknecht, P., Seppi, K., & Poewe, W. (2015). The concept of prodromal Parkinson’s disease. Journal of Parkinson’s Disease, 5(4), 681–697.  https://doi.org/10.3233/JPD-150685.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., et al. (2011). The Parkinson progression marker initiative (PPMI). Progress in Neurobiology, 95(4), 629–635.  https://doi.org/10.1016/j.pneurobio.2011.09.005.CrossRefGoogle Scholar
  14. Marras, C., Armstrong, M. J., Meaney, C. A., Fox, S., Rothberg, B., Reginold, W., et al. (2013). Measuring mild cognitive impairment in patients with Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 28(5), 626–633.  https://doi.org/10.1002/mds.25426.CrossRefGoogle Scholar
  15. Nombela, C., Rowe, J. B., Winder-Rhodes, S. E., Hampshire, A., Owen, A. M., Breen, D. P., et al. (2014). Genetic impact on cognition and brain function in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain, 137(10), 2743–2758.  https://doi.org/10.1093/brain/awu201.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Pagonabarraga, J., & Kulisevsky, J. (2012). Cognitive impairment and dementia in Parkinson’s disease. Neurobiology of Disease, 46(3), 590–596.  https://doi.org/10.1016/j.nbd.2012.03.029.CrossRefPubMedGoogle Scholar
  17. Pedersen, K. F., Larsen, J. P., Tysnes, O.-B., & Alves, G. (2017). Natural course of mild cognitive impairment in Parkinson disease: A 5-year population-based study. Neurology, 88(8), 767–774.  https://doi.org/10.1212/WNL.0000000000003634.CrossRefPubMedGoogle Scholar
  18. Rowe, J. B., Hughes, L., Williams-Gray, C. H., Bishop, S., Fallon, S., Barker, R. A., & Owen, A. M. (2010). The val158met COMT polymorphism’s effect on atrophy in healthy aging and Parkinson’s disease. Neurobiology of Aging, 31(6), 1064–1068.  https://doi.org/10.1016/j.neurobiolaging.2008.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Sheikh, H. I., Kryski, K. R., Kotelnikova, Y., Hayden, E. P., & Singh, S. M. (2017). Catechol-O-methyltransferase gene (val158met) polymorphisms and anxious symptoms in early childhood: The roles of hypothalamus-pituitary-adrenal axis reactivity and life stress. Neuroscience Letters, 659, 86–91.  https://doi.org/10.1016/j.neulet.2017.08.060.CrossRefPubMedGoogle Scholar
  20. Weintraub, D., Oehlberg, K. A., Katz, I. R., & Stern, M. B. (2006). Test characteristics of the 15-item geriatric depression scale and Hamilton depression rating scale in Parkinson disease. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 14(2), 169–175.  https://doi.org/10.1097/01.JGP.0000192488.66049.4b.CrossRefGoogle Scholar
  21. Williams-Gray, C. H., Evans, J. R., Goris, A., Foltynie, T., Ban, M., Robbins, T. W., et al. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain, 132(11), 2958–2969.  https://doi.org/10.1093/brain/awp245.CrossRefPubMedGoogle Scholar
  22. Winter, Y., von Campenhausen, S., Arend, M., Longo, K., Boetzel, K., Eggert, K., et al. (2011). Health-related quality of life and its determinants in Parkinson’s disease: Results of an Italian cohort study. Parkinsonism & Related Disorders, 17(4), 265–269.  https://doi.org/10.1016/j.parkreldis.2011.01.003.CrossRefGoogle Scholar
  23. Xu, J., Qin, W., Li, Q., Li, W., Liu, F., Liu, B., et al. (2017). Prefrontal volume mediates effect of COMT polymorphism on interference resolution capacity in healthy male adults. Cerebral Cortex (New York, N.Y.: 1991), 27(11), 5211–5221.  https://doi.org/10.1093/cercor/bhw301.CrossRefGoogle Scholar
  24. Zeighami, Y., Ulla, M., Iturria-Medina, Y., Dadar, M., Zhang, Y., Larcher, K. M.-H., et al. (2015). Network structure of brain atrophy in de novo Parkinson’s disease. eLife, 4.  https://doi.org/10.7554/eLife.08440.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Frederic Sampedro
    • 1
    • 2
    • 3
  • Juan Marín-Lahoz
    • 1
    • 2
    • 3
  • Saul Martínez-Horta
    • 1
    • 2
    • 3
  • Javier Pagonabarraga
    • 1
    • 2
    • 3
  • Jaime Kulisevsky
    • 1
    • 2
    • 3
    Email author
  1. 1.Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
  2. 2.Biomedical Research Institute (IIB-Sant Pau)BarcelonaSpain
  3. 3.Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain

Personalised recommendations