Advertisement

A preliminary investigation of corpus callosum subregion white matter vulnerability and relation to chronic outcome in boxers

  • Ashley L. Ware
  • Elisabeth A. Wilde
  • Mary R. Newsome
  • Paolo Moretti
  • Tracy Abildskov
  • Gregory S. Vogt
  • Stephen R. McCauley
  • Gerri Hanten
  • Jill V. Hunter
  • Zili D. Chu
  • Harvey S. Levin
ORIGINAL RESEARCH

Abstract

Microstructural neuropathology occurs in the corpus callosum (CC) after repetitive sports concussion in boxers and can be dose-dependent. However, the specificity and relation of CC changes to boxing exposure extent and post-career psychiatric and neuropsychological outcomes are largely unknown. Using deterministic diffusion tensor imaging (DTI) techniques, boxers and demographically-matched, noncontact sport athletes were compared to address literature gaps. Ten boxers and 9 comparison athletes between 26 and 59 years old (M = 44.63, SD = 9.24) completed neuropsychological testing and MRI. Quantitative DTI metrics were estimated for CC subregions. Group×Region interaction effects were observed on fractional anisotropy (FA; η2p ≥ .21). Follow-up indicated large effects of group (η2p ≥ .26) on splenium FA (boxers<comparisons) and genu mean diffusivity (MD; boxers>comparisons), but not radial diffusivity (RD). The group of boxers had moderately elevated number of psychiatric symptoms and reduced neuropsychological scores relative to the comparison group. In boxers, years sparring, professional bouts, and knockout history correlated strongly (r > |.40|) with DTI metrics and fine motor dexterity. In the comparison group, splenium FA correlated positively with psychiatric symptoms. In the boxer group, neuropsychological scores correlated with DTI metrics in all CC subregions. Results suggested relative vulnerability of the splenium and, to a lesser extent, the genu to chronic, repetitive head injury from boxing. Dose-dependent associations of professional boxing history extent with DTI white matter structure indices as well as fine motor dexterity were supported. Results indicated that symptoms of depression and executive dysfunction may provide the strongest indicators of global CC disruption from boxing.

Keywords

Repetitive sports concussion Boxing DTI Executive function Depression Corpus callosum 

Notes

Acknowledgements

This work was supported by the National Institutes of Health grants 5R21-NS086714 and 5P01-NS056202. The funding sources had no role in the interpretation of data, writing of this paper, or in the decision to submit for publication. The contents of this paper are solely the responsibility of the authors and do not represent the official views of the National Institutes of Health. The authors wish to thank Gary Simmons and Ron Collins for their help with participant recruitment as well as Krista Runge and the Core for Advanced MRI (CAMRI) at Baylor College of Medicine for their assistance in MRI acquisition. We also wish to thank the anonymous reviewers for their helpful comments and suggestions in revising the manuscript.

Compliance with ethical standards

Conflict of interest

None to report.

References

  1. Areza-Fegyveres, R., Rosemberg, S., Castro, R. M. R. P. S., Porto, C. S., Bahia, V. S., Caramelli, P., & Nitrini, R. (2007). Dementia pugilistica with clinical features of Alzheimer’s disease. Arquivos de Neuro-Psiquiatria, 65(3B), 830–833.CrossRefGoogle Scholar
  2. Banks, S. J., Mayer, B., Obuchowski, N., Shin, W., Lowe, M., Phillips, M., et al. (2014). Impulsiveness in professional fighters. The Journal of Neuropsychiatry and Clinical Neurosciences, 26(1), 44–50.  https://doi.org/10.1176/appi.neuropsych.12070185.CrossRefPubMedGoogle Scholar
  3. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897.CrossRefGoogle Scholar
  4. Belanger, H. G., Spiegel, E., & Vanderploeg, R. D. (2010). Neuropsychological performance following a history of multiple self-reported concussions: A meta-analysis. Journal of the International Neuropsychological Society, 16(02), 262.  https://doi.org/10.1017/S1355617709991287.CrossRefPubMedGoogle Scholar
  5. Budde, M. D., Janes, L., Gold, E., Turtzo, L. C., & Frank, J. A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: Validation in the rat using Fourier analysis of stained tissue sections. Brain, 134(8), 2248–2260.  https://doi.org/10.1093/brain/awr161.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chappell, M. H., Uluğ, A. M., Zhang, L., Heitger, M. H., Jordan, B. D., Zimmerman, R. D., & Watts, R. (2006). Distribution of microstructural damage in the brains of professional boxers: A diffusion MRI study. Journal of Magnetic Resonance Imaging, 24(3), 537–542.  https://doi.org/10.1002/jmri.20656.CrossRefPubMedGoogle Scholar
  7. Chepuri, N. B., Yen, Y.-F., Burdette, J. H., Li, H., Moody, D. M., & Maldjian, J. A. (2002). Diffusion anisotropy in the corpus callosum. AJNR. American Journal of Neuroradiology, 23(5), 803–808.PubMedGoogle Scholar
  8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: L. Erlbaum Associates.Google Scholar
  9. Corsellis, J. A., Bruton, C. J., & Freeman-Browne, D. (1973). The aftermath of boxing. Psychological Medicine, 3(3), 270–303.CrossRefGoogle Scholar
  10. Davenport, E. M., Whitlow, C. T., Urban, J. E., Espeland, M. A., Jung, Y., Rosenbaum, D. A., et al. (2014). Abnormal white matter integrity related to head impact exposure in a season of high school varsity football. Journal of Neurotrauma, 31(19), 1617–1624.  https://doi.org/10.1089/neu.2013.3233.CrossRefPubMedPubMedCentralGoogle Scholar
  11. DeKosky, S. T., Blennow, K., Ikonomovic, M. D., & Gandy, S. (2013). Acute and chronic traumatic encephalopathies: Pathogenesis and biomarkers. Nature Reviews Neurology, 9(4), 192–200.  https://doi.org/10.1038/nrneurol.2013.36.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Di Russo, F., & Spinelli, D. (2010). Sport is not always healthy: Executive brain dysfunction in professional boxers. Psychophysiology, 47(3), 425–434.  https://doi.org/10.1111/j.1469-8986.2009.00950.x.CrossRefPubMedGoogle Scholar
  13. Heilbronner, R. L., Bush, S. S., Ravdin, L. D., Barth, J. T., Iverson, G. L., Ruff, R. M., et al. (2009). Neuropsychological consequences of boxing and recommendations to improve safety: A National Academy of Neuropsychology education paper. Archives of Clinical Neuropsychology, 24(1), 11–19.  https://doi.org/10.1093/arclin/acp005.CrossRefPubMedGoogle Scholar
  14. Herweh, C., Hess, K., Meyding-Lamadé, U., Bartsch, A. J., Stippich, C., Jost, J., et al. (2016). Reduced white matter integrity in amateur boxers. Neuroradiology, 58(9), 911–920.  https://doi.org/10.1007/s00234-016-1705-y.CrossRefPubMedGoogle Scholar
  15. Jordan, B. D. (2000). Chronic traumatic brain injury associated with boxing. Seminars in Neurology, 20(02), 179–186.  https://doi.org/10.1055/s-2000-9826.CrossRefPubMedGoogle Scholar
  16. Jordan, B. D., Jahre, C., Hauser, W. A., Zimmerman, R. D., Zarrelli, M., Lipsitz, E. C., et al. (1992). CT of 338 active professional boxers. Radiology, 185(2), 509–512.  https://doi.org/10.1148/radiology.185.2.1410364.CrossRefPubMedGoogle Scholar
  17. Klove, H. (1963). CLINICAL NEUROPSYCHOLOGY. The Medical Clinics of North America, 47, 1647–1658.CrossRefGoogle Scholar
  18. Knyazeva, M. G. (2013). Splenium of Corpus callosum: Patterns of interhemispheric interaction in children and adults. Neural Plasticity, 2013, 1–12.  https://doi.org/10.1155/2013/639430.CrossRefGoogle Scholar
  19. Koerte, I. K., Lin, A. P., Willems, A., Muehlmann, M., Hufschmidt, J., Coleman, M. J., et al. (2015). A review of neuroimaging findings in repetitive brain trauma: Neuroimaging findings in repetitive brain trauma. Brain Pathology, 25(3), 318–349.  https://doi.org/10.1111/bpa.12249.CrossRefPubMedGoogle Scholar
  20. Koh, J. O., Cassidy, J. D., & Watkinson, E. J. (2003). Incidence of concussion in contact sports: A systematic review of the evidence. Brain Injury, 17(10), 901–917.  https://doi.org/10.1080/0269905031000088869.CrossRefPubMedGoogle Scholar
  21. Lafayette Instruments. (1989). In ) (Ed.), Grooved pegboard test user instructions. Lafayette: Lafayette Instrument Company, Inc.Google Scholar
  22. Levin, H. S., Lippold, S. C., Goldman, A., Handel, S., High, W. M., Eisenberg, H. M., & Zelitt, D. (1987). Neurobehavioral functioning and magnetic resonance imaging findings in young boxers. Journal of Neurosurgery, 67(5), 657–667.  https://doi.org/10.3171/jns.1987.67.5.0657.CrossRefPubMedGoogle Scholar
  23. Levin, H. S., Wilde, E. A., Chu, Z., Yallampalli, R., Hanten, G. R., Li, X., et al. (2008). Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. Journal of Head Trauma Rehabilitation, 23(4), 197–208.  https://doi.org/10.1097/01.HTR.0000327252.54128.7c.CrossRefPubMedGoogle Scholar
  24. Lewinsohn, P. M., Seeley, J. R., Roberts, R. E., & Allen, N. B. (1997). Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychology and Aging, 12(2), 277–287.CrossRefGoogle Scholar
  25. Lischke, A., Domin, M., Freyberger, H. J., Grabe, H. J., Mentel, R., Bernheim, D., & Lotze, M. (2017). Structural alterations in the Corpus callosum are associated with suicidal behavior in women with borderline personality disorder. Frontiers in Human Neuroscience, 11.  https://doi.org/10.3389/fnhum.2017.00196.
  26. Marco, E. J., Harrell, K. M., Brown, W. S., Hill, S. S., Jeremy, R. J., Kramer, J. H., et al. (2012). Processing speed delays contribute to executive function deficits in individuals with agenesis of the Corpus callosum. Journal of the International Neuropsychological Society, 18(03), 521–529.  https://doi.org/10.1017/S1355617712000045.CrossRefPubMedPubMedCentralGoogle Scholar
  27. McAllister, T. W., Ford, J. C., Flashman, L. A., Maerlender, A., Greenwald, R. M., Beckwith, J. G., et al. (2014). Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes. Neurology, 82(1), 63–69.  https://doi.org/10.1212/01.wnl.0000438220.16190.42.CrossRefPubMedPubMedCentralGoogle Scholar
  28. McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., et al. (2009). Chronic traumatic encephalopathy in athletes: Progressive Tauopathy after repetitive head injury. Journal of Neuropathology & Experimental Neurology, 68(7), 709–735.  https://doi.org/10.1097/NEN.0b013e3181a9d503.CrossRefGoogle Scholar
  29. McKee, A. C., Stein, T. D., Kiernan, P. T., & Alvarez, V. E. (2015). The neuropathology of chronic traumatic encephalopathy: CTE neuropathology. Brain Pathology, 25(3), 350–364.  https://doi.org/10.1111/bpa.12248.CrossRefPubMedGoogle Scholar
  30. Mouzon, B., Chaytow, H., Crynen, G., Bachmeier, C., Stewart, J., Mullan, M., et al. (2012). Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. Journal of Neurotrauma, 29(18), 2761–2773.  https://doi.org/10.1089/neu.2012.2498.CrossRefPubMedGoogle Scholar
  31. Orrison, W. W., Hanson, E. H., Alamo, T., Watson, D., Sharma, M., Perkins, T. G., & Tandy, R. D. (2009). Traumatic brain injury: A review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. Journal of Neurotrauma, 26(5), 689–701.  https://doi.org/10.1089/neu.2008.0636.CrossRefPubMedGoogle Scholar
  32. Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.  https://doi.org/10.1177/014662167700100306.CrossRefGoogle Scholar
  33. Reitan, R. M., & Wolfson, D. (1985). The Halstead–Reitan Neuropsycholgical Test Battery: Therapy and clinical interpretation. Tucson: Neuropsychological Press.Google Scholar
  34. Roberts, G. W., Allsop, D., & Bruton, C. J. (1990). The occult aftermath of boxing. Journal of Neurology, Neurosurgery, and Psychiatry, 53(3), 373–378.CrossRefGoogle Scholar
  35. Shah, S., Yallampalli, R., Merkley, T. L., McCauley, S. R., Bigler, E. D., MacLeod, M., et al. (2012). Diffusion tensor imaging and volumetric analysis of the ventral striatum in adults with traumatic brain injury. Brain Injury, 26(3), 201–210.  https://doi.org/10.3109/02699052.2012.654591.CrossRefPubMedGoogle Scholar
  36. Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 137–192.  https://doi.org/10.1007/s11682-012-9156-5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shin, W., Mahmoud, S. Y., Sakaie, K., Banks, S. J., Lowe, M. J., Phillips, M., et al. (2014). Diffusion measures indicate fight exposure-related damage to cerebral white matter in boxers and mixed martial arts fighters. American Journal of Neuroradiology, 35(2), 285–290.  https://doi.org/10.3174/ajnr.A3676.CrossRefPubMedGoogle Scholar
  38. Smith, D. H., Johnson, V. E., & Stewart, W. (2013). Chronic neuropathologies of single and repetitive TBI: Substrates of dementia? Nature Reviews Neurology, 9(4), 211–221.  https://doi.org/10.1038/nrneurol.2013.29.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sollmann, N., Echlin, P. S., Schultz, V., Viher, P. V., Lyall, A. E., Tripodis, Y., et al. (2018). Sex differences in white matter alterations following repetitive subconcussive head impacts in collegiate ice hockey players. NeuroImage: Clinical, 17, 642–649.  https://doi.org/10.1016/j.nicl.2017.11.020.CrossRefGoogle Scholar
  40. Song, S.-K., Sun, S.-W., Ju, W.-K., Lin, S.-J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.CrossRefGoogle Scholar
  41. Stern, R. A., Daneshvar, D. H., Baugh, C. M., Seichepine, D. R., Montenigro, P. H., Riley, D. O., et al. (2013). Clinical presentation of chronic traumatic encephalopathy. Neurology, 81(13), 1122–1129.  https://doi.org/10.1212/WNL.0b013e3182a55f7f.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stiller, J. W., Yu, S. S., Brenner, L. A., Langenberg, P., Scrofani, P., Pannella, P., et al. (2014). Sparring and neurological function in professional boxers. Frontiers in Public Health, 2.  https://doi.org/10.3389/fpubh.2014.00069.
  43. Voineskos, A. N., Rajji, T. K., Lobaugh, N. J., Miranda, D., Shenton, M. E., Kennedy, J. L., et al. (2012). Age-related decline in white matter tract integrity and cognitive performance: A DTI tractography and structural equation modeling study. Neurobiology of Aging, 33(1), 21–34.  https://doi.org/10.1016/j.neurobiolaging.2010.02.009.CrossRefPubMedGoogle Scholar
  44. Wilde, E. A., Chu, Z., Bigler, E. D., Hunter, J. V., Fearing, M. A., Hanten, G., et al. (2006). Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. Journal of Neurotrauma, 23(10), 1412–1426.  https://doi.org/10.1089/neu.2006.23.1412.CrossRefPubMedGoogle Scholar
  45. Wilde, E. A., McCauley, S. R., Chu, Z., Hunter, J. V., Bigler, E. D., Yallampalli, R., et al. (2009). Diffusion tensor imaging of hemispheric asymmetries in the developing brain. Journal of Clinical and Experimental Neuropsychology, 31(2), 205–218.  https://doi.org/10.1080/13803390802098118.CrossRefPubMedGoogle Scholar
  46. Wilde, E. A., Hunter, J. V., Li, X., Amador, C., Hanten, G., Newsome, M. R., et al. (2016). Chronic effects of boxing: Diffusion tensor imaging and cognitive findings. Journal of Neurotrauma, 33(7), 672–680.  https://doi.org/10.1089/neu.2015.4035.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Witelson, S. F., Kigar, D. L., Scamvougeras, A., Kideckel, D. M., Buck, B., Stanchev, P. L., et al. (2008). Corpus callosum anatomy in right-handed homosexual and heterosexual men. Archives of Sexual Behavior, 37(6), 857–863.  https://doi.org/10.1007/s10508-007-9276-y.CrossRefPubMedGoogle Scholar
  48. Xu, L., Nguyen, J. V., Lehar, M., Menon, A., Rha, E., Arena, J., et al. (2016). Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. Experimental Neurology, 275, 436–449.  https://doi.org/10.1016/j.expneurol.2014.11.004.CrossRefPubMedGoogle Scholar
  49. Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W.-Y. I. (2013). Deterministic diffusion Fiber tracking improved by quantitative anisotropy. PLoS One, 8(11), e80713.  https://doi.org/10.1371/journal.pone.0080713.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhang, L., Ravdin, L. D., Relkin, N., Zimmerman, R. D., Jordan, B., Lathan, W. E., & Uluğ, A. M. (2003). Increased diffusion in the brain of professional boxers: A preclinical sign of traumatic brain injury? AJNR. American Journal of Neuroradiology, 24(1), 52–57.PubMedGoogle Scholar
  51. Zhang, L., Heier, L. A., Zimmerman, R. D., Jordan, B., & Ulug, A. M. (2006). Diffusion anisotropy changes in the brains of professional boxers. AJNR. American Journal of Neuroradiology, 27(9), 2000–2004.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashley L. Ware
    • 1
    • 2
    • 3
  • Elisabeth A. Wilde
    • 2
    • 4
    • 5
    • 6
    • 7
  • Mary R. Newsome
    • 2
    • 8
  • Paolo Moretti
    • 4
    • 5
    • 7
  • Tracy Abildskov
    • 7
  • Gregory S. Vogt
    • 2
    • 8
  • Stephen R. McCauley
    • 2
    • 5
    • 9
  • Gerri Hanten
    • 2
  • Jill V. Hunter
    • 2
    • 6
    • 10
  • Zili D. Chu
    • 6
    • 10
  • Harvey S. Levin
    • 2
    • 5
    • 8
    • 9
  1. 1.Department of Psychology and Texas Institute for Measurement, Evaluation and StatisticsUniversity of HoustonHoustonUSA
  2. 2.Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonUSA
  3. 3.Department of PsychologyUniversity of CalgaryCalgaryCanada
  4. 4.George E. Wahlen VA Salt Lake City Healthcare SystemSalt Lake CityUSA
  5. 5.Department of NeurologyBaylor College of MedicineHoustonUSA
  6. 6.Department of RadiologyBaylor College of MedicineHoustonUSA
  7. 7.Department of NeurologyUniversity of UtahSalt Lake CityUSA
  8. 8.Michael E. DeBakey VA Medical CenterHoustonUSA
  9. 9.Department of PediatricsBaylor College of MedicineHoustonUSA
  10. 10.Department of Pediatric RadiologyTexas Children’s HospitalHoustonUSA

Personalised recommendations