Advertisement

Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with cognitive impairment

  • Xin Tan
  • Yi Liang
  • Hui Zeng
  • Chunhong Qin
  • Yifan Li
  • Jinquan Yang
  • Shijun QiuEmail author
ORIGINAL RESEARCH
  • 34 Downloads

Abstract

The posterior cingulate cortex (PCC) has been suggested to be a cortical hub of the default mode network (DMN). Our goal in the current study was to determine whether there were alterations in the PCC’s functional connectivity (FC) with whole brain regions in type 2 diabetes mellitus (T2DM) and to determine their relationships with cognitive dysfunction. In this study, the FC of the PCC was characterized by using resting-state functional MRI and a seed-based whole-brain correlation method in 24 T2DM patients and compared with 24 well-matched healthy controls. Spearman correlation analysis was performed to determine the relationships between the FC of the PCC and cognitive dysfunction. T2DM was associated with a significantly decreased FC of the PCC to widespread brain regions (p < 0.05, corrected for AlphaSim). We also found that the FC of the PCC in these brain regions was positively correlated with several neuropsychological test scores, such as the FC to the right angular gyrus (AnG) and the bilateral middle temporal gyrus (MTG) with the Auditory Verbal Learning Test (AVLT) and the FC to the bilateral inferior frontal gyrus (IFG) with the digit span test (DST). Moreover, the FCs of the PCC to the right superior parietal lobule (SPL), bilateral temporal lobes and left cerebrum were detected as negatively correlated with the Trail Making Test (TMT). No such correlations were detected in healthy controls. The present study provides useful information about the effect of the FC of the PCC on the underlying neuropathological process of T2DM-related cognitive dysfunction and may provide supporting evidence for further molecular biology studies.

Keywords

Type 2 diabetes Posterior cingulate cortex Functional connectivity Cognitive dysfunction 

Notes

Compliance with ethical standards

Conflicts of interest

We declare that we have no conflict of interest.

References

  1. Adrews-Hanna, J. R. (2012). The Brain’s default network and its adaptive role in internal mentation. Neuroscientist, 18(3), 251–270.CrossRefGoogle Scholar
  2. Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wangm, X. J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16(12), 584–592.CrossRefGoogle Scholar
  3. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.CrossRefGoogle Scholar
  4. Bledowski, C., Prvulovic, D., Goebel, R., Zanella, F. E., & Linden, D. E. (2004). Attentional systems in target and distractor processing: A combined ERP and fMRI study. Neuroimage, 22(2), 530–540.CrossRefGoogle Scholar
  5. Bravo, F., Cross, I., Hawkins, S., Gonzalez, N., Docampo, J., Bruno, C., & Stamatakis, E. A. (2017). Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus. Neuropsychologia, 102(8), 144–162.CrossRefGoogle Scholar
  6. Buckner, R. L., Andrewshanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 3(1124), 1–38.CrossRefGoogle Scholar
  7. Chen, Y., Liu, Z., Zhang, J., Xu, K., Zhang, S., Wei, D., & Zhang, Z. (2014). Altered brain activation patterns under different working memory loads in patients with type 2 diabetes. Diabetes Care, 37(12), 3157–3163.CrossRefGoogle Scholar
  8. Costafreda, S. G., Fu, C. H., Lee, L., Everitt, B., Brammer, M. J., & David, A. S. (2006). A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal gyrus. Human Brain Mapping, 27(10), 799–810.CrossRefGoogle Scholar
  9. Cui, Y., Jiao, Y., Chen, Y. C., Wang, K., Gao, B., Wen, S., Ju, S., & Teng, G. J. (2014). Altered spontaneous brain activity in type 2 diabetes: A resting-state functional MRI study. Diabetes, 63(2), 749–760.CrossRefGoogle Scholar
  10. Cui, Y., Jiao, Y., Chen, H. J., Ding, J., Luo, B., Peng, C. Y., Ju, S. H., & Teng, G. J. (2015). Aberrant functional connectivity of default-mode network in type 2 diabetes patients. European Radiology, 25(11), 3238–3246.CrossRefGoogle Scholar
  11. Fang, P., An, J., Tan, X., Zeng, L. L., Shen, H., Qiu, S., et al. (2017). Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes. Brain Research Bulletin, 4(130), 95–100.CrossRefGoogle Scholar
  12. Frøkjær, J. B., Andersen, L. W., Brock, C., Simrén, M., Ljungberg, M., Søfteland, E., et al. (2013). Altered brain microstructure assessed by diffusion tensor imaging in patients with diabetesand gastrointestinal symptoms. Diabetes Care, 36(3), 662–668.CrossRefGoogle Scholar
  13. Galea, M., & Woodward, M. (2005). Mini-mental state examination (MMSE). The Australian Journal of Physiotherapy, 51(3), 198.CrossRefGoogle Scholar
  14. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.CrossRefGoogle Scholar
  15. Hsu, J. L., Chen, Y. L., Leu, J. G., Jaw, F. S., Lee, C. H., Tsai, Y. F., Hsu, C. Y., Bai, C. H., & Leemans, A. (2012). Microstructural white matter abnormalities in type 2diabetes mellitus: A diffusion tensor imaging study. Neuroimage, 59(2), 1098–1105.CrossRefGoogle Scholar
  16. Ivry, R. B., Spencer, R. M., Zelaznik, H. N., & Diedrichsen, J. (2002). The cerebellum and event timing. Annals of the New York Academy of Sciences, 978, 302–317.CrossRefGoogle Scholar
  17. Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. The Journal of Neuroscience, 31(9), 3217–3224.CrossRefGoogle Scholar
  18. Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the posterior cingulate cortex. The Journal of Neuroscience, 32(1), 215–222.CrossRefGoogle Scholar
  19. Li, W., Mai, X., & Liu, C. (2014). The default mode network and social understanding of others: What do brain connectivity studies tell us. Frontiers in Human Neuroscience, 24(8), 74–80.Google Scholar
  20. Liakakis, G., Nickel, J., & Seitz, R. J. (2011). Diversity of the inferior frontal gyrus--a meta-analysis of neuroimaging studies. Behavioural Brain Research, 225(1), 341–347.CrossRefGoogle Scholar
  21. Liang, P., Wang, Z., Yang, Y., & Li, K. J. (2012). Three subsystems of the inferior parietal cortex are differently affected in mild cognitive impairment. Alzheimer Disease, 30(3), 475–487.CrossRefGoogle Scholar
  22. Liu, L., Li, W., Zhang, Y., Qin, W., Lu, S., & Zhang, Q. (2017). Weaker functional connectivity strength in patients with type 2 diabetes mellitus. Frontiers in Neuroscience, 11.  https://doi.org/10.3389/fnins.2017.00390.
  23. Moran, C., Phan, T. G., Chen, J., Blizzard, L., Beare, R., Venn, A., Munch, G., Wood, A. G., Forbes, J., Greenaway, T. M., Pearson, S., & Srikanth, V. (2013). Brain atrophy in type 2 diabetes regional distribution and influence on cognition. Diabetes Care, 36(12), 4036–4042.CrossRefGoogle Scholar
  24. Musen, G., Jacobson, A. M., Bolo, N. R., Simonson, D. C., Shenton, M. E., McCartney, R. L., Flores, V. L., & Hoogenboom, W. S. (2012). Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 61(9), 2375–2379.CrossRefGoogle Scholar
  25. Pihlajamaki, M., Tanila, H., Hanninen, T., Kononen, M., Laakso, M. P., Partanen, K., et al. (2000). Verbal fluency activates the left medial temporal lobe: A functional magnetic resonance imaging study. Neurobiology of Aging, 47(4), 470–476.Google Scholar
  26. Qi, D., Wang, A., Chen, Y., Chen, K., Zhang, S., Zhang, J., Li, X., Ai, L., & Zhang, Z. (2017). Default mode network connectivity and related white matter disruption in type 2 diabetes mellitus patients concurrent with amnestic mild cognitive impairment. Current Alzheimer Research http://www.eurekaselect.com/151651/article. Accessed 17 Apr 2017 , 14, 1238–1246.CrossRefGoogle Scholar
  27. Reijmer, Y. D., Brundel, M., De Bresser, J., Kappelle, L. J., Leemans, A., & Biessels, G. J. (2013). Microstructural white matter abnormalities andcognitive functioning in type 2 diabetes a diffusion tensor imaging study. Diabetes Care, 36(1), 137–144.CrossRefGoogle Scholar
  28. Savitz, J., & Drevets, W. C. (2009). Bipolar and major depressive disorder: Neuroimaging the developmental-degenerative divide. Neuroscience and Biobehavioral Reviews, 33(5), 699–771.CrossRefGoogle Scholar
  29. Seghier, M. L. (2013). The angular gyrus: Multiple function and multiple subdivisions. Neuroscientist, 19(1), 43–61.CrossRefGoogle Scholar
  30. Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., Mintun, M. A., Wang, S., Coalson, R. S., & Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 1942–1947.CrossRefGoogle Scholar
  31. Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020–11025.CrossRefGoogle Scholar
  32. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.CrossRefGoogle Scholar
  33. Tan, X., Fang, P., An, J., Lin, H., Liang, Y., Shen, W., et al. (2016). Micro-structural white matter abnormalities in type 2 diabetic patients: a DTI study using TBSS analysis. Neuroradiology, 58(12), 1209–1216.CrossRefGoogle Scholar
  34. Thakral, P. P., Madore, K. P., & Schacter, D. L. (2017). A role for the left angular gyrus in episodic simulation and memory. The Journal of Neuroscience http://www.ncbi.nlm.nih.gov/m/pubmed/28733357/. Accessed 21 Jul 2017, 37, 8142–8149.CrossRefGoogle Scholar
  35. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438.CrossRefGoogle Scholar
  36. Wahlund, L. O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M., Sjögren, M., Wallin, A., Ader, H., Leys, D., Pantoni, L., Pasquier, F., Erkinjuntti, T., Scheltens, P., & European Task Force on Age-Related White Matter Changes. (2001). A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke, 32(6), 1318–1322.CrossRefGoogle Scholar
  37. Wood, A. G., Chen, J., Moran, C., Phan, T., Beare, R., Cooper, K., Litras, S., & Srikanth, V. (2016). Brain activation during memory encoding in type 2 diabetes mellitus: A discordant twin pair study. Journal Diabetes Research, 2016, 1–10.  https://doi.org/10.1155/2016/3978428.CrossRefGoogle Scholar
  38. Yang, S. Q., Xu, Z. P., Xiong, Y., Zhan, Y. F., Guo, L. Y., Zhang, S., Jiang, R. F., Yao, Y. H., Qin, Y. Y., Wang, J. Z., Liu, Y., & Zhu, W. Z. (2016a). Altered Intranetwork and internetwork functional connectivity in type 2 diabetes mellitus with and without cognitive impairment. Scientific Reports, 6.  https://doi.org/10.1038/srep32980.
  39. Yang, S., Wu, M., Ajilore, O., Lamar, M., & Kumar, A. (2016b). Metabolic aberrations impact biophysical integrity of macromolecular protein pools in the default mode network. Diabetes, 65(11), 3464–3472.CrossRefGoogle Scholar
  40. Zeng, L. L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., & Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(Pt5), 1498–1507.CrossRefGoogle Scholar
  41. Zeng, L. L., Shen, H., Liu, L., & Hu, D. (2014a). Unsupervised classification of major depression using functional connectivity MRI. Human Brain Mapping, 35(4), 1630–1641.CrossRefGoogle Scholar
  42. Zeng, L. L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., Buckner, R. L., & Liu, H. (2014b). Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6058–6062.CrossRefGoogle Scholar
  43. Zhou, H., Lu, W., Shi, Y., Bai, F., Chang, J., Yuan, Y., Teng, G., & Zhang, Z. (2010). Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neuroscience Letters, 473(1), 5–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Imaging CenterThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations