Advertisement

Subclinical eating disorder traits are correlated with cortical thickness in regions associated with food reward and perception

  • Gregory L. Wallace
  • Emily Richard
  • Cynthia S. Peng
  • Annchen R. Knodt
  • Ahmad R. Hariri
BRIEF COMMUNICATION

Abstract

Behavioral traits associated with various forms of psychopathology are conceptualized as dimensional, varying from those present in a frank disorder to subclinical expression. Demonstrating links between these behavioral traits and neurobiological indicators, such as brain structure, provides one form of validation for this view. However, unlike behavioral dimensions associated with other forms of psychopathology (e.g., autism spectrum disorder, attention deficit hyperactivity disorder, antisocial disorders), eating disorder traits have not been investigated in this manner in spite of the potential that such an approach has to elucidate etiological mechanisms. Therefore, we examined for the first time neural endophenotypes of Anorexia Nervosa and Bulimia via dimensional traits (measured using the Eating Disorders Inventory-3) in a large subclinical sample of young adults (n = 456 and n = 247, respectively; ages = 18–22 years) who each provided a structural magnetic resonance imaging scan. Cortical thickness was quantified at 81,924 vertices across the cortical surface. We found: 1) increasing eating disorder traits correlated with thinner cortex in the insula and orbitofrontal cortex, among other regions, and 2) using these regions as seeds, increasing eating disorder trait scores negatively modulated structural covariance between these seed regions and other cortical regions linked to regulatory and sensorimotor functions (e.g., frontal and temporal cortices). These findings parallel those found in the clinical literature (i.e., thinner cortex in these food-related regions in individuals with eating disorders) and therefore provide evidence supporting the dimensional view of behavioral traits associated with eating disorders. Extending this approach to genetic and neuroimaging genetics studies holds promise to inform etiology.

Keywords

Eating disorder Anorexia Bulimia Behavioral traits Brain Cortical thickness 

Notes

Acknowledgements

We thank all members of the Laboratory of NeuroGenetics for their assistance in conducting the Duke Neurogenetics Study, which was supported by Duke University and NIH grant R01DA033369. A.R.H. is further supported by NIH grant R01AG049789. We also thank Esha Mehta and Caylynn Yao for their assistance in completing this research.

Funding

This study was supported by Duke University and NIH grant R01DA033369. A.R.H. is further supported by NIH grant R01AG049789.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest relevant to this article to disclose.

Ethical approval

This study was approved by the Duke University Institutional Review Board.

Informed consent

All participants provided informed consent.

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Association.CrossRefGoogle Scholar
  2. Bernardoni, F., King, J. A., Geisler, D., Stein, E., Jaite, C., Nätsch, D., Tam, F. I., Boehm, I., Seidel, M., Roessner, V., & Ehrlich, S. (2016). Weight restoration therapy rapidly reverses cortical thinning in anorexia nervosa: A longitudinal study. NeuroImage, 130, 214–222.CrossRefGoogle Scholar
  3. Cyr, M., Kopala-Sibley, D. C., Lee, S., Chen, C., Stefan, M., Fontaine, M., Terranova, K., Berner, L. A., & Marsh, R. (2017). Reduced inferior and orbital frontal thickness in adolescent bulimia nervosa persists over two-year follow-up. Journal of the American Academy of Child and Adolescent Psychiatry, 56, 866–874.CrossRefGoogle Scholar
  4. Ducharme, S., Hudziak, J. J., Botteron, K. N., Albaugh, M. D., Nguyen, T. V., Karama, S., & Evans, A. C. (2012). Brain development cooperative group. Decreased regional cortical thickness and thinning rate are associated with inattention symptoms in healthy children. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 18–27.CrossRefGoogle Scholar
  5. Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Dale, A. M., Walhovd, K. B., & Initiative, A. D. N. (2014). Accelerating cortical thinning: Unique to dementia or universal in aging? Cerebral Cortex, 24, 919–934.CrossRefGoogle Scholar
  6. Frank, G. K. (2015). Advances from neuroimaging studies in eating disorders. CNS Spectrums, 20, 391–400.CrossRefGoogle Scholar
  7. Garner, D. M. (2004). Eating Disorder Inventory-3 Professional Manual. Lutz: Psychological Assessment Resources, Inc.Google Scholar
  8. Gaudio, S., Wiemerslage, L., Brooks, S. J., & Schiöth, H. B. (2016). A systematic review of resting-state functional-MRI studies in anorexia nervosa: Evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration. Neuroscience and Biobehavioral Reviews, 71, 578–589.CrossRefGoogle Scholar
  9. Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16, 1276–1282.CrossRefGoogle Scholar
  10. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748–751.CrossRefGoogle Scholar
  11. Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., Lee, J. M., Kim, S. I., & Evans, A. C. (2005). Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. NeuroImage, 27, 210–221.Google Scholar
  12. King, J. A., Geisler, D., Ritschel, F., Boehm, I., Seidel, M., Roschinski, B., Soltwedel, L., Zwipp, J., Pfuhl, G., Marxen, M., Roessner, V., & Ehrlich, S. (2015). Global cortical thinning in acute anorexia nervosa normalizes following long-term weight restoration. Biological Psychiatry, 77, 624–632.CrossRefGoogle Scholar
  13. Lavagnino, L., Mwangi, B., Cao, B., Shott, M. E., Soares, J. C., & Frank, G. K. W. (2018). Cortical thickness patterns as state biomarker of anorexia nervosa. International Journal of Eating Disorders, 51, 241–249.Google Scholar
  14. Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage, 24, 163–173.CrossRefGoogle Scholar
  15. Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R. K., Giedd, J., & Evans, A. C. (2006). Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage, 31, 993–1003.CrossRefGoogle Scholar
  16. Lyttelton, O., Boucher, M., Robbins, S., & Evans, A. (2007). An unbiased iterative group registration template for cortical surface analysis. NeuroImage, 34, 1535–1544.CrossRefGoogle Scholar
  17. MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. (2000). Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 12, 340–356.Google Scholar
  18. Mous, S. E., White, T., Muetzel, R. L., El Marroun, H., Rijlaarsdam, J., Polderman, T. J., Jaddoe, V. W., Verhulst, F. C., Posthuma, D., & Tiemeier, H. (2017). Cortical morphology as a shared neurobiological substrate of attention-deficit/hyperactivity symptoms and executive functioning: A population-based pediatric neuroimaging study. Journal of Psychiatry & Neuroscience, 42, 103–112.CrossRefGoogle Scholar
  19. Narr, K. L., Woods, R. P., Lin, J., Kim, J., Phillips, O. R., Del'Homme, M., Caplan, R., Toga, A. W., McCracken, J. T., & Levitt, J. G. (2009). Widespread cortical thinning is a robust anatomical marker for attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 1014–1022.CrossRefGoogle Scholar
  20. Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10, 872–878.CrossRefGoogle Scholar
  21. Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 7174–7177.CrossRefGoogle Scholar
  22. Rolls, E. T. (2015). Taste, olfactory, and food reward value processing in the brain. Progress in Neurobiology, 127-128, 64–90.CrossRefGoogle Scholar
  23. Scheel, C., Rotarska-Jagiela, A., Schilbach, L., Lehnhardt, F. G., Krug, B., Vogeley, K., & Tepest, R. (2011). Imaging derived cortical thickness reduction in high-functioning autism: Key regions and temporal slope. NeuroImage, 58, 391–400.Google Scholar
  24. Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., Clasen, L., Evans, A., Giedd, J., & Rapoport, J. L. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences, 104, 19649–19654.CrossRefGoogle Scholar
  25. Shaw, P., Gilliam, M., Liverpool, M., Weddle, C., Malek, M., Sharp, W., Greenstein, D., Evans, A., Rapoport, J., & Giedd, J. (2011). Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: Support for a dimensional view of attention deficit hyperactivity disorder. American Journal of Psychiatry, 168, 143–151.CrossRefGoogle Scholar
  26. Smaragdi, A., Cornwell, H., Toschi, N., Riccelli, R., Gonzalez-Madruga, K., Wells, A., Clanton, R., Baker, R., Rogers, J., Martin-Key, N., Puzzo, I., Batchelor, M., Sidlauskaite, J., Bernhard, A., Martinelli, A., Kohls, G., Konrad, K., Baumann, S., Raschle, N., Stadler, C., Freitag, C., Sonuga-Barke, E. J. S., De Brito, S., & Fairchild, G. (2017). Sex differences in the relationship between conduct disorder and cortical structure in adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 56, 703–712.CrossRefGoogle Scholar
  27. Taylor, J. E., & Worsley, K. J. (2007). Detecting sparse signal in random fields, with an application to brain mapping. Journal of the American Statistical Association, 102, 913–928.CrossRefGoogle Scholar
  28. Treadway, M. T., & Leonard, C. V. (2016). Isolating biomarkers for symptomatic states: Considering symptom–substrate chronometry. Molecular Psychiatry, 21, 1180–1187.CrossRefGoogle Scholar
  29. Wallace, G. L., Dankner, N., Kenworthy, L., Giedd, J. N., & Martin, A. (2010). Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain, 133, 3745–3754.CrossRefGoogle Scholar
  30. Wallace, G. L., Shaw, P., Lee, N. R., Clasen, L. S., Raznahan, A., Lenroot, R. K., Martin, A., & Giedd, J. N. (2012). Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth. Journal of Neuroscience, 32, 4856–4860.CrossRefGoogle Scholar
  31. Wallace, G. L., White, S., Robustelli, B., Sinclair, S., Hwang, S., Martin, A., & Blair, R. J. (2014). Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 456–465.CrossRefGoogle Scholar
  32. Yang, Y., Wang, P., Baker, L. A., Narr, K. L., Joshi, S. H., Hafzalla, G., Raine, A., & Thompson, P. M. (2015). Thicker temporal cortex associates with a developmental trajectory for psychopathic traits in adolescents. PLoS One, 10, e0127025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Speech, Language, and Hearing SciencesThe George Washington UniversityWashingtonUSA
  2. 2.Laboratory of NeuroGenetics, Department of Psychology and NeuroscienceDuke UniversityDurhamUSA

Personalised recommendations