Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1529–1543 | Cite as

Neural correlates of reappraisal considering working memory capacity and cognitive flexibility

  • Jenny Zaehringer
  • Rosalux FalquezEmail author
  • Anna-Lena Schubert
  • Frauke Nees
  • Sven Barnow
Original Research

Abstract

Cognitive reappraisal of emotion is strongly related to long-term mental health. Therefore, the exploration of underlying cognitive and neural mechanisms has become an essential focus of research. Considering that reappraisal and executive functions rely on a similar brain network, the question arises whether behavioral differences in executive functions modulate neural activity during reappraisal. Using functional neuroimaging, the present study aimed to analyze the role of working memory capacity (WMC) and cognitive flexibility in brain activity during down-regulation of negative emotions by reappraisal in N = 20 healthy participants. Results suggests that WMC and cognitive flexibility were negatively correlated with prefrontal activity during reappraisal condition. Here, results also revealed a negative correlation between cognitive flexibility and amygdala activation. These findings provide first hints that (1) individuals with lower WMC and lower cognitive flexibility might need more higher-order cognitive neural resources in order to down-regulate negative emotions and (2) cognitive flexibility relates to emotional reactivity during reappraisal.

Keywords

Cognitive reappraisal Working memory capacity Cognitive flexibility Prefrontal cortex Emotion regulation 

Notes

Acknowledgements

This research was conducted at the University of Heidelberg, Institute of Psychology, Heidelberg, Germany and was supported by the German Cancer Research Center in Heidelberg. This research is based on an unpublished master's thesis by Jenny Zaehringer. The authors would like to thank Katrin Schulze, Moritz Berger, Adelheid Fuxa and Moritz Riese for their friendly support during the data collection and analyses.

Compliance with ethical standards

The manuscript meets the guidelines for ethical conduct and report of research mentioned in the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

11682_2017_9788_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 KB)

References

  1. Aldao, A., & Nolen-Hoeksema, S. (2012). When are adaptive strategies most predictive of psychopathology? Journal of Abnormal Psychology, 121(1), 276–281.  https://doi.org/10.1037/a0023598.CrossRefPubMedGoogle Scholar
  2. Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217–237.  https://doi.org/10.1016/j.cpr.2009.11.004.CrossRefPubMedGoogle Scholar
  3. Armbruster, D. J., Ueltzhoffer, K., Basten, U., & Fiebach, C. J. (2012). Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. Journal of Cognitive Neuroscience, 24(12), 2385–2399.  https://doi.org/10.1162/jocn_a_00286.CrossRefPubMedGoogle Scholar
  4. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.  https://doi.org/10.1038/nn1003.CrossRefPubMedGoogle Scholar
  5. Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.  https://doi.org/10.1016/S1364-6613(00)01538-2.CrossRefPubMedGoogle Scholar
  6. Baddeley, A. D. (2007). Working memory, thought, and action (Vol. 45). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  7. Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303–312.  https://doi.org/10.1093/scan/nsm029.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barnow, S. (2012). Emotionsregulation und psychopathologie: Ein überblick. = Emotion regulation and psychopathology. An overview. Psychologische Rundschau, 63(2), 111–124.  https://doi.org/10.1026/0033-3042/a000119.CrossRefGoogle Scholar
  9. Barnow, S., Aldinger, M., Ulrich, I., & Stopsack, M. (2013). Emotion regulation in depression: An overview of results using various methods. Psychologische Rundschau, 64(4), 235–243.  https://doi.org/10.1026/0033-3042/a000172.CrossRefGoogle Scholar
  10. Behmer, L. P. Jr., & Fournier, L. R. (2014). Working memory modulates neural efficiency over motor components during a novel action planning task: an EEG study. Behavioural Brain Research, 260, 1–7.  https://doi.org/10.1016/j.bbr.2013.11.031.CrossRefPubMedGoogle Scholar
  11. Behr, M., & Becker, M. (2004). Skalen zum Erleben von Emotionen (SEE). Göttingen: Hogrefe.Google Scholar
  12. Bennett, C. M., Wolford, G. L., & Miller, M. B. (2009). The principled control of false positives in neuroimaging. Social Cognitive and Affective Neuroscience, 4, 417–422.CrossRefGoogle Scholar
  13. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.  https://doi.org/10.1016/0005-7916(94)90063-9.CrossRefPubMedGoogle Scholar
  14. Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cerberal Cortex, 24(11), 2981–90.  https://doi.org/10.1093/cercor/bht154.CrossRefGoogle Scholar
  15. Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33(3), 386–404.  https://doi.org/10.1016/0022-0965(82)90054-6.CrossRefGoogle Scholar
  16. Cohen, N., Margulies, D. S., Ashkenazi, S., Schaefer, A., Taubert, M., Henik, A., … Okon-Singer, H. (2016). Using executive control training to suppress amygdala reactivity to aversive information. NeuroImage, 125, 1022–1031.  https://doi.org/10.1016/j.neuroimage.2015.10.069.CrossRefPubMedGoogle Scholar
  17. D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 3–11.  https://doi.org/10.1007/s002210000395.CrossRefPubMedGoogle Scholar
  18. Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.  https://doi.org/10.1126/science.1155466.CrossRefPubMedGoogle Scholar
  19. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.  https://doi.org/10.1146/annurev-psych-113011-143750.CrossRefPubMedGoogle Scholar
  20. Dolcos, F., Miller, B., Kragel, P., Jha, A., & McCarthy, G. (2007). Regional brain differences in the effect of distraction during the delay interval of a working memory task. Brain Research, 1152, 171–181.  https://doi.org/10.1016/j.brainres.2007.03.059.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual Differences in Working Memory Capacity and What They Tell Us About Controlled Attention, General Fluid Intelligence, and Functions of the Prefrontal Cortex. In A. Miyake & P. Shah (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control: Cambridge University Press.Google Scholar
  22. Falquez, R., Couto, B., Ibanez, A., Freitag, M. T., Berger, M., Arens, E. A., … Barnow, S. (2014). Detaching from the negative by reappraisal: the role of right superior frontal gyrus (BA9/32). Frontiers in Behavioral Neuroscience, 8.  https://doi.org/10.3389/fnbeh.2014.00165.
  23. Franke, G. H., & Derogatis, L. R. (2000). BSI: Brief Symptom Inventory von LR Derogatis:(Kurzform der SCL-90-R): deutsche Version: Testmappe. Göttingen: Beltz.Google Scholar
  24. Garland, E. L., Farb, N. A., Goldin, P., & Fredrickson, B. L. (2015). Mindfulness Broadens Awareness and Builds Eudaimonic Meaning: A Process Model of Mindful Positive Emotion Regulation. Psychoanalytic Inquiry, 26(4), 293–314.  https://doi.org/10.1080/1047840X.2015.1064294.CrossRefGoogle Scholar
  25. Garnefski, N., Kraaij, V., & Spinhoven, P. (2002). CERQ: Manual for the use of the Cognitive Emotion Regulation Questionnaire. Leiderdorp: DATEC.Google Scholar
  26. Geier, C. F., Garver, K. E., & Luna, B. (2007). Circuitry underlying temporally extended spatial working memory. NeuroImage, 35(2), 904–915.  https://doi.org/10.1016/j.neuroimage.2006.12.022.CrossRefPubMedGoogle Scholar
  27. Genet, J. J., Malooly, A. M., & Siemer, M. (2013). Flexibility is not always adaptive: affective flexibility and inflexibility predict rumination use in everyday life. Cognition and Emotion, 27(4), 685–695.  https://doi.org/10.1080/02699931.2012.733351.CrossRefPubMedGoogle Scholar
  28. Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586.  https://doi.org/10.1016/j.biopsych.2007.05.031.CrossRefPubMedGoogle Scholar
  29. Gross, J. J. (1999). Emotion regulation: Past, present, future. Cognition and Emotion, 13(5), 551–573.  https://doi.org/10.1080/026999399379186.CrossRefGoogle Scholar
  30. Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39(3), 281–291.  https://doi.org/10.1017/S0048577201393198.CrossRefPubMedGoogle Scholar
  31. Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348.  https://doi.org/10.1037/0022-3514.85.2.348.CrossRefPubMedGoogle Scholar
  32. Gross, J. J., & Thompson, R. A. (2007). Emotion Regulation: Conceptual Foundations. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 3–24). New York, NY: Guilford Press.Google Scholar
  33. Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage, 50(3), 1313–1319.  https://doi.org/10.1016/j.neuroimage.2009.12.109.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hedden, T., & Gabrieli, J. D. E. (2010). Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. NeuroImage, 51(1), 421–431.  https://doi.org/10.1016/j.neuroimage.2010.01.089.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174–180.  https://doi.org/10.1016/j.tics.2012.01.006.CrossRefPubMedGoogle Scholar
  36. Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13(6), 730–743.  https://doi.org/10.1162/08989290152541403.CrossRefPubMedGoogle Scholar
  37. Joormann, J., & Gotlib, I. H. (2008). Updating the contents of working memory in depression: interference from irrelevant negative material. Journal of Abnormal Psychology, 117(1), 182.  https://doi.org/10.1037/0021-843X.117.1.182.CrossRefPubMedGoogle Scholar
  38. Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: relation to cognitive inhibition. Cognition and Emotion, 24(2), 281–298.  https://doi.org/10.1080/02699930903407948.CrossRefPubMedGoogle Scholar
  39. Joormann, J., & Vanderlind, W. M. (2014). Emotion Regulation in Depression The Role of Biased Cognition and Reduced Cognitive Control. Clinical Psychological Science, 2(4), 402–421.  https://doi.org/10.1177/2167702614536163.CrossRefGoogle Scholar
  40. Kalisch, R. (2009). The functional neuroanatomy of reappraisal: Time matters. Neuroscience and Biobehavioral Reviews, 33(8), 1215–1226.  https://doi.org/10.1016/j.neubiorev.2009.06.003.CrossRefPubMedGoogle Scholar
  41. Kane, M. J., Conway, A. R. A., Hambrick, D. Z., & Engle, R. W. (2007). Variation in working memory capacity as variation in executive attention and control. In Variation in working memory (pp. 21–48). New York, NY: Oxford University Press.Google Scholar
  42. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.  https://doi.org/10.3758/BF03196323.CrossRefGoogle Scholar
  43. Kim, S. H., & Hamann, S. (2007). Neural correlates of positive and negative emotion regulation. Journal of Cognitive Neuroscience, 19(5), 776–798.  https://doi.org/10.1162/jocn.2007.19.5.776.CrossRefPubMedGoogle Scholar
  44. Koenigsberg, H. W., Fan, J., Ochsner, K. N., Liu, X., Guise, K., Pizzarello, S., … Goodman, M. (2010). Neural correlates of using distancing to regulate emotional responses to social situations. Neuropsychologia, 48(6), 1813–1822.  https://doi.org/10.1016/j.neuropsychologia.2010.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Krause-Utz, A., Oei, N. Y. L., Niedtfeld, I., Bohus, M., Spinhoven, P., Schmahl, C., & Elzinga, B. M. (2012). Influence of emotional distraction on working memory performance in borderline personality disorder. Psychological Medicine, 42(10), 2181–2192.  https://doi.org/10.1017/S0033291712000153.CrossRefPubMedGoogle Scholar
  46. Kübler, A., Dixon, V., & Garavan, H. (2006). Automaticity and reestablishment of executive control—An fMRI study. Journal of Cognitive Neuroscience, 18(8), 1331–1342.  https://doi.org/10.1162/jocn.2006.18.8.1331.CrossRefPubMedGoogle Scholar
  47. Kühner, C., Bürger, C., Keller, F., & Hautzinger, M. (2007). Reliabilität und Validität des revidierten Beck-Depressions-inventars (BDI-II). Befunde aus deutschsprachigen Stichproben [Reliability and validity of the Revised Beck Depression Inventory (BDI-II). Results from German samples]. Der Nervenarzt, 78(6), 651–656.  https://doi.org/10.1007/s00115-006-2098-7.CrossRefPubMedGoogle Scholar
  48. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). “International affective picture system (IAPS): affective ratings of pictures and instruction manual. NIMH, Center for the Study of Emotion and Attention,” Technical Report A-6 Gainesville, FL: University of Florida.Google Scholar
  49. Lehrl, S. (1976). Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B). Erlangen: Straube Verlag.Google Scholar
  50. Leung, H. C., Gore, J. C., & Goldman-Rakic, P. S. (2002). Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. Journal of Cognitive Neuroscience, 14(4), 659–671.  https://doi.org/10.1162/08989290260045882.CrossRefPubMedGoogle Scholar
  51. Lezak, M. D. (1995). Neuropsychological assessment (3rd edn.). New York, NY: Oxford University Press.Google Scholar
  52. Loch, N., Hiller, W., & Witthoft, M. (2011). The Cognitive Emotion Regulation Questionnaire (CERQ). Psychometric evaluation of a German adaptation. Zeitschrift Fur Klinische Psychologie Und Psychotherapie, 40(2), 94–106.  https://doi.org/10.1026/1616-3443/a000079.CrossRefGoogle Scholar
  53. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492.  https://doi.org/10.1037/0033-295X.95.4.492.CrossRefGoogle Scholar
  54. Malooly, A. M., Genet, J. J., & Siemer, M. (2013). Individual differences in reappraisal effectiveness: The role of affective flexibility. Emotion, 13(2), 302–313.  https://doi.org/10.1037/a0029980.CrossRefGoogle Scholar
  55. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107.  https://doi.org/10.1038/nn2024.CrossRefPubMedGoogle Scholar
  56. McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: an fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682.  https://doi.org/10.1016/j.neuropsychologia.2008.04.023.CrossRefPubMedGoogle Scholar
  57. McRae, K., Hughes, B. L., Chopra, S., Gabrieli, J. D. E., Gross, J. J., & Ochsner, K. N. (2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22(2), 248–262.  https://doi.org/10.1162/jocn.2009.21243.CrossRefPubMedPubMedCentralGoogle Scholar
  58. McRae, K., Jacobs, S. E., Ray, R. D., John, O. P., & Gross, J. J. (2012). Individual differences in reappraisal ability: Links to reappraisal frequency, well-being, and cognitive control. Journal of Research in Personality, 46(1), 2–7.  https://doi.org/10.1016/j.jrp.2011.10.003.CrossRefGoogle Scholar
  59. Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506.  https://doi.org/10.1016/j.tics.2011.08.003.CrossRefPubMedGoogle Scholar
  60. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.  https://doi.org/10.1006/cogp.1999.0734.CrossRefPubMedGoogle Scholar
  61. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.  https://doi.org/10.1016/S1364-6613(03)00028-7.CrossRefPubMedGoogle Scholar
  62. Morawetz, C., Bode, S., Baudewig, J., Jacobs, A. M., & Heekeren, H. R. (2016). Neural representation of emotion regulation goals. Human Brain Mapping, 37(2), 600–620.  https://doi.org/10.1002/hbm.23053.CrossRefPubMedGoogle Scholar
  63. Muhlert, N., Boy, F., Lawrence A. D. (2015). Risk Taking, Response Inhibition and the Right Inferior Frontal Gyrus. Journal of Neurology Neurosurgery and Psychiatry, 86(9).  https://doi.org/10.1136/jnnp-2015-311750.39.
  64. Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D. E., & Gross, J. J. (2004). For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23, 483–499.  https://doi.org/10.1016/j.neuroimage.2004.06.030.CrossRefPubMedGoogle Scholar
  65. Okon-Singer, H., Hendler, T., Pessoa, L., & Shackman, A. J. (2015). The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Frontiers in Human Neuroscience, 9. Artn 58  https://doi.org/10.3389/Fnhum.2015.00058.
  66. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.  https://doi.org/10.1038/nn1165.CrossRefPubMedGoogle Scholar
  67. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158.  https://doi.org/10.1038/nrn2317.CrossRefPubMedGoogle Scholar
  68. Pessoa, L. (2010). Emotion and cognition and the amygdala: from “what is it?” to “what’s to be done?” Neuropsychologia, 48(12), 3416–3429.  https://doi.org/10.1016/j.neuropsychologia.2010.06.038.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67–70.  https://doi.org/10.1093/scan/nsm006.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. The Journal of Neuroscience, 25(22), 5356–5364.  https://doi.org/10.1523/JNEUROSCI.3880-04.2005.CrossRefPubMedGoogle Scholar
  71. Ramsey, N. F., Jansma, J. M., Jager, G., Van Raalten, T., & Kahn, R. S. (2004). Neurophysiological factors in human information processing capacity. Brain: a Journal of Neurology, 127(3), 517–525.  https://doi.org/10.1093/brain/awh060.CrossRefGoogle Scholar
  72. Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and Biobehavioral Reviews, 36(1), 479–501.  https://doi.org/10.1016/j.neubiorev.2011.08.005.CrossRefPubMedGoogle Scholar
  73. Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A., Schulz, J. B., … Eickhoff, S. B. (2012). Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage, 60(1), 830–846.  https://doi.org/10.1016/j.neuroimage.2011.11.050.CrossRefPubMedGoogle Scholar
  74. Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731.  https://doi.org/10.1162/08989290260138627.CrossRefPubMedGoogle Scholar
  75. Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proceedings of the National Academy of Sciences of the United States of America, 96, 6558–6563.  https://doi.org/10.1073/pnas.96.11.6558.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature neuroscience, 3(5), 509–515.  https://doi.org/10.1038/74889.CrossRefPubMedGoogle Scholar
  77. Schmeichel, B. J., & Tang, D. (2014). The relationship between individual differences in executive functioning and emotion regulation: A comprehensive review. In J. P. Forgas & E. Harmon-Jones (Eds.), The control within: Motivation and its regulation (pp. 133–151).Google Scholar
  78. Schmeichel, B. J., Volokhov, R. N., & Demaree, H. A. (2008). Working memory capacity and the self-regulation of emotional expression and experience. Journal of Personality and Social Psychology, 95(6), 1526–1540.  https://doi.org/10.1037/a0013345.CrossRefPubMedGoogle Scholar
  79. Schwartz, M. F. (2006). The cognitive neuropsychology of everyday action and planning. Cognitive Neuropsychology, 23(1), 202–221.  https://doi.org/10.1080/02643290500202623.CrossRefPubMedGoogle Scholar
  80. Schweizer, S., & Dalgleish, T. (2016). The impact of affective contexts on working memory capacity in healthy populations and in individuals with PTSD. Emotion, 16(1), 16–23.  https://doi.org/10.1037/emo0000072.CrossRefPubMedGoogle Scholar
  81. Schweizer, S., Grahn, J., Hampshire, A., Mobbs, D., & Dalgleish, T. (2013). Training the emotional brain: Improving affective control through emotional working memory training. The Journal of Neuroscience, 33(12), 5301–5311.  https://doi.org/10.1523/JNEUROSCI.2115-13.2013.CrossRefPubMedGoogle Scholar
  82. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127.  https://doi.org/10.1037/0033-295X.84.2.127.CrossRefGoogle Scholar
  83. Spiegel, M. A., Koester, D., & Schack, T. (2013). The functional role of working memory in the (re-)planning and execution of grasping movements. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1326–1339.  https://doi.org/10.1037/a0031398.CrossRefPubMedGoogle Scholar
  84. Tombaugh, T. N. (2004). Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203–214.  https://doi.org/10.1016/S0887-6177(03)00039-8.CrossRefPubMedGoogle Scholar
  85. Urry, H. L., van Reekum, C. M., Johnstone, T., Kalin, N. H., Thurow, M. E., Schaefer, H. S., … Davidson, R. J. (2006). Amygdala and Ventromedial Prefrontal Cortex Are Inversely Coupled during Regulation of Negative Affect and Predict the Diurnal Pattern of Cortisol Secretion among Older Adults. The Journal of Neuroscience, 26(16), 4415–4425.  https://doi.org/10.1523/JNEUROSCI.3215-05.2006.CrossRefPubMedGoogle Scholar
  86. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59(6), 1037–1050.  https://doi.org/10.1016/j.neuron.2008.09.006.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin, 138(4), 775–808.  https://doi.org/10.1037/a0027600.CrossRefPubMedGoogle Scholar
  88. Zelazo, P. D., & Cunningham, W. A. (2007). Executive Function: Mechanisms Underlying Emotion Regulation. In J. J. Gross (Ed.), Handbook of Emotion Regulation (pp. 135–158). New York, NY: Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Jenny Zaehringer
    • 1
    • 2
    • 3
  • Rosalux Falquez
    • 1
    Email author
  • Anna-Lena Schubert
    • 4
  • Frauke Nees
    • 5
  • Sven Barnow
    • 1
  1. 1.Department of Clinical Psychology and Psychotherapy, Institute of PsychologyHeidelberg UniversityHeidelbergGermany
  2. 2.Department Neuroimaging, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
  3. 3.Department of Psychosomatic and Psychotherapeutic Medicine, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
  4. 4.Department of Personality Research, Institute of PsychologyHeidelberg UniversityHeidelbergGermany
  5. 5.Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany

Personalised recommendations