Brain Imaging and Behavior

, Volume 12, Issue 2, pp 335–344 | Cite as

Prefrontal dysconnectivity links to working memory deficit in first-episode schizophrenia

  • Xiaojing Fang
  • Yulin Wang
  • Luqi Cheng
  • Yuanchao Zhang
  • Yuan Zhou
  • Shihao Wu
  • Huan Huang
  • Jilin Zou
  • Cheng Chen
  • Jun Chen
  • Huiling Wang
  • Tianzi Jiang
Original Research

Abstract

Working memory (WM) deficit is a core feature of schizophrenia and is characterized by abnormal functional integration in the prefrontal cortex, including the dorsolateral prefrontal cortex (dLPFC), dorsal anterior cingulate cortex (dACC), and ventrolateral prefrontal cortex (vLPFC). However, the specific mechanism by which the abnormal neuronal circuits that involve these brain regions contribute to this deficit is still unclear. Therefore, this study focused on these regions and sought to answer which abnormal causal relationships in these regions can be linked to impaired WM in schizophrenia. We used spectral dynamic causal modeling to estimate directed (effective) connectivity between these regions based on resting-state functional magnetic resonance imaging data from healthy control (HC) subjects and patients with first-episode schizophrenia (FES). By comparing these effective connections in the controls and patients, we found that the effective connectivity from the dACC to the dLPFC and from the right dLPFC to the left vLPFC was weaker in the FES group than in the HC group. Furthermore, these effective connections displayed a positive correlation with WM performance in the HCs. However, in the FES patients, the effective connectivity from the dACC to the dLPFC was not correlated with WM performance, and the effective connectivity from the right dLPFC to the left vLPFC was negatively correlated with WM performance. These results could be explained by an aberrant top-down mechanism of WM processing and provide new evidence for the dysconnectivity hypothesis of schizophrenia.

Keywords

Resting-state fMRI Effective connectivity Schizophrenia Spectral dynamic causal modeling Working memory deficit 

Notes

Acknowledgements

We thank all patients and controls for their study participation. We are very grateful to Drs. Rhoda E. and Edmund F. Perozzi for English and content editing assistance and discussions. This work was supported by National Basic Research Program of China (Grant No. 2011CB707800), National Natural Science Foundation of China (Grant No. 91132301), Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012075), Plan A of Science and Technology Support Program from Science and Technology Department of Sichuan Province (Grand no. 2014SZ0014), and Natural Science Foundation of Hubei Province (Grant No. 2014CFB732).

Compliance with ethical standards

All procedures performed in this study of human participants were in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all the participants. The study was approved by the Medical Research Ethics Committee of Renmin Hospital of Wuhan University, People’s Republic of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11682_2017_9692_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)

References

  1. Akins, R. B., Tolson, H., & Cole, B. R. (2005). Stability of response characteristics of a Delphi panel: application of bootstrap data expansion. BMC Medical Research Methodology, 5(1), 37.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 2883–2901.CrossRefPubMedGoogle Scholar
  3. Bastos-Leite, A. J., Ridgway, G. R., Silveira, C., Norton, A., Reis, S., & Friston, K. J. (2014). Dysconnectivity within the default mode in first-episode schizophrenia: a stochastic dynamic causal modeling study with functional magnetic resonance imaging. Schizophrenia Bulletin, doi: 10.1093/schbul/sbu080.
  4. Bennett, D. S., Mohamed, F. B., Carmody, D. P., Malik, M., Faro, S. H., & Lewis, M. (2013). Prenatal tobacco exposure predicts differential brain function during working memory in early adolescence: a preliminary investigation. Brain Imaging and Behavior, 7(1), 49–59.CrossRefPubMedGoogle Scholar
  5. Bonner-Jackson, A., Haut, K., Csernansky, J. G., & Barch, D. M. (2005). The influence of encoding strategy on episodic memory and cortical activity in schizophrenia. Biological Psychiatry, 58(1), 47–55.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.CrossRefPubMedGoogle Scholar
  7. Clos, M., Rottschy, C., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. NeuroImage, 99, 269–280.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cole, M. W., Anticevic, A., Repovs, G., & Barch, D. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70(1), 43–50.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. The Journal of Neuroscience, 32(26), 8988–8999.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cui, L. B., Liu, J., Wang, L. X., Li, C., Xi, Y. B., Guo, F., et al. (2015). Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging. Frontiers in Human Neuroscience, 9, 589.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423.CrossRefPubMedGoogle Scholar
  12. Deserno, L., Sterzer, P., Wustenberg, T., Heinz, A., & Schlagenhauf, F. (2012). Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. The Journal of Neuroscience, 32(1), 12–20.CrossRefPubMedGoogle Scholar
  13. D'Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 3–11.CrossRefPubMedGoogle Scholar
  14. Fleischhacker, W. W., Keet, I. P., Kahn, R. S., & Committee, E. S. (2005). The European first episode schizophrenia trial (EUFEST): rationale and design of the trial. Schizophrenia Research, 78(2), 147–156.CrossRefPubMedGoogle Scholar
  15. Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica. Supplementum, 395, 68–79.CrossRefPubMedGoogle Scholar
  16. Friston, K. J., & Frith, C. D. (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience, 3(2), 89–97.PubMedGoogle Scholar
  17. Friston, K., & Penny, W. (2011). Post hoc Bayesian model selection. NeuroImage, 56(4), 2089–2099.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.CrossRefPubMedGoogle Scholar
  19. Fryer, S. L., Woods, S. W., Kiehl, K. A., Calhoun, V. D., Pearlson, G. D., Roach, B. J., et al. (2013). Deficient suppression of default mode regions during working memory in individuals with early psychosis and at clinical high-risk for psychosis. Frontiers in Psychology, 4, 92.Google Scholar
  20. Fryer, S. L., Roach, B. J., Ford, J. M., Turner, J. A., van Erp, T. G., Voyvodic, J., et al. (2015). Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology.Google Scholar
  21. Goldman-Rakic, P. S. (1996). Regional and cellular fractionation of working memory. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13473–13480.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gordon, E. M., Devaney, J. M., Bean, S., & Vaidya, C. J. (2013). Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function. Cerebral Cortex. doi: 10.1093/cercor/bht229.Google Scholar
  23. He, H., Sui, J., Yu, Q., Turner, J. A., Ho, B. C., Sponheim, S. R., et al. (2012). Altered small-world brain networks in schizophrenia patients during working memory performance. PloS One, 7(6), e38195.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Henseler, I., Falkai, P., & Gruber, O. (2010). Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. Journal of Psychiatric Research, 44(6), 364–372.CrossRefPubMedGoogle Scholar
  25. Kahan, J., Urner, M., Moran, R., Flandin, G., Marreiros, A., Mancini, L., et al. (2014). Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity. Brain, 137(Pt 4), 1130–1144.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kang, S. S., Sponheim, S. R., Chafee, M. V., & MacDonald 3rd, A. W. (2011). Disrupted functional connectivity for controlled visual processing as a basis for impaired spatial working memory in schizophrenia. Neuropsychologia, 49(10), 2836–2847.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.CrossRefPubMedGoogle Scholar
  28. Kyriakopoulos, M., Dima, D., Roiser, J. P., Corrigall, R., Barker, G. J., & Frangou, S. (2012). Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 51(9), 911–920 e912.CrossRefPubMedGoogle Scholar
  29. Lisman, J. E., Fellous, J.-M., & Wang, X.-J. (1998). A role for NMDA-receptor channels in working memory. Nature Neuroscience, 1(4), 273–275.CrossRefPubMedGoogle Scholar
  30. Meda, S. A., Stevens, M. C., Folley, B. S., Calhoun, V. D., & Pearlson, G. D. (2009). Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis. PloS One, 4(11), e7911.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Monaco, S. A., Gulchina, Y., & Gao, W. J. (2015). NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neuroscience and Biobehavioral Reviews, 56, 127–138.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mooney, C. Z., Duval, R. D., Duval, R. (1993). Bootstrapping: A nonparametric approach to statistical inference (Vol. 94–95): Sage.Google Scholar
  33. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  34. Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry & Neuroscience, 37(1), 17–27.CrossRefGoogle Scholar
  35. Perlstein, W. M., Carter, C. S., Noll, D. C., & Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. The American Journal of Psychiatry, 158(7), 1105–1113.CrossRefPubMedGoogle Scholar
  36. Raichle, M. E., & Gusnard, D. A. (2005). Intrinsic brain activity sets the stage for expression of motivated behavior. The Journal of Comparative Neurology, 493(1), 167–176.CrossRefPubMedGoogle Scholar
  37. Razi, A., Kahan, J., Rees, G., & Friston, K. J. (2015). Construct validation of a DCM for resting state fMRI. NeuroImage, 106, 1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schlosser, R., Gesierich, T., Kaufmann, B., Vucurevic, G., Hunsche, S., Gawehn, J., et al. (2003a). Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. NeuroImage, 19(3), 751–763.CrossRefPubMedGoogle Scholar
  39. Schlosser, R., Gesierich, T., Kaufmann, B., Vucurevic, G., & Stoeter, P. (2003b). Altered effective connectivity in drug free schizophrenic patients. Neuroreport, 14(17), 2233–2237.CrossRefPubMedGoogle Scholar
  40. Schlosser, R. G., Koch, K., Wagner, G., Nenadic, I., Roebel, M., Schachtzabel, C., et al. (2008). Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study. Neuropsychologia, 46(1), 336–347.CrossRefPubMedGoogle Scholar
  41. Snyder, A. Z., Abdullaev, Y. G., Posner, M. I., & Raichle, M. E. (1995). Scalp electrical potentials reflect regional cerebral blood flow responses during processing of written words. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1689–1693.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149.CrossRefGoogle Scholar
  43. Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939.CrossRefPubMedGoogle Scholar
  44. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tu, P. C., Hsieh, J. C., Li, C. T., Bai, Y. M., & Su, T. P. (2012). Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study. NeuroImage, 59(1), 238–247.CrossRefPubMedGoogle Scholar
  46. Unschuld, P. G., Buchholz, A. S., Varvaris, M., van Zijl, P. C., Ross, C. A., Pekar, J. J., et al. (2014). Prefrontal brain network connectivity indicates degree of both schizophrenia risk and cognitive dysfunction. Schizophrenia Bulletin, 40(3), 653–664.CrossRefPubMedGoogle Scholar
  47. Weinberger, D. R., & Berman, K. F. (1996). Prefrontal function in schizophrenia: confounds and controversies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1495–1503.CrossRefPubMedGoogle Scholar
  48. Woodward, T. S., Cairo, T. A., Ruff, C. C., Takane, Y., Hunter, M. A., & Ngan, E. T. (2006). Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory. Neuroscience, 139(1), 317–325.CrossRefPubMedGoogle Scholar
  49. Zhang, Y., Lin, L., Lin, C. P., Zhou, Y., Chou, K. H., Lo, C. Y., et al. (2012). Abnormal topological organization of structural brain networks in schizophrenia. Schizophrenia Research, 141(2–3), 109–118.CrossRefPubMedGoogle Scholar
  50. Zhou, Y., Liang, M., Jiang, T., Tian, L., Liu, Y., Liu, Z., et al. (2007). Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neuroscience Letters, 417(3), 297–302.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xiaojing Fang
    • 1
  • Yulin Wang
    • 2
  • Luqi Cheng
    • 1
  • Yuanchao Zhang
    • 1
  • Yuan Zhou
    • 3
  • Shihao Wu
    • 4
  • Huan Huang
    • 4
  • Jilin Zou
    • 4
  • Cheng Chen
    • 4
  • Jun Chen
    • 5
  • Huiling Wang
    • 4
    • 6
  • Tianzi Jiang
    • 1
    • 7
    • 8
    • 9
    • 10
  1. 1.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological PsychologyVrije Universiteit BrusselBrusselsBelgium
  3. 3.Key Laboratory of Behavioral Science & Magnetic Resonance Imaging Research Center, Institute of PsychologyChinese Academy of SciencesBeijingChina
  4. 4.Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanChina
  5. 5.Department of RadiologyRenmin Hospital of Wuhan UniversityWuhanChina
  6. 6.Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhanChina
  7. 7.Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
  8. 8.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  9. 9.CAS Center for Excellence in Brain Science, Institute of AutomationChinese Academy of SciencesBeijingChina
  10. 10.Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia

Personalised recommendations