Advertisement

Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes

  • Marilene Olga dos Santos Silva
  • Marcela Gomes da Silva
  • Lina BufalinoEmail author
  • Maíra Reis de Assis
  • Delman de Almeida Gonçalves
  • Paulo Fernando Trugilho
  • Thiago de Paula Protásio
Original Paper
  • 41 Downloads

Abstract

Tachi-branco (Tachigali vulgaris, L.F.Gomes da Silva & H.C.Lima) is a leguminous tree species native to the Amazon rainforest that has drawn attention for its remarkably fast growth, a required trait for biomass/bioenergy plantations. In evaluations of biomass production and wood properties of T. vulgaris planted in homogeneous plantations at different spacings in the Amazonian state of Pará, Brazil, biomass of 7-year-old trees was quantified for individual trees and the entire population. Wood was also sampled to assess properties relevant to bioenergy applications. The choice for spacing dimension for planting nonclonal T. vulgaris should consider whether the priority is greater productivity per tree, achieved with greater spacings (9.0 m2 and 12.0 m2), or productivity per area, achieved with closer spacings (6.0 m2 and 7.5 m2). Genetic variability of the T. vulgaris seed stand and/or high heritability of wood traits overcame the effect of different spacing on all morphological, physical, chemical and energetic properties of T. vulgaris wood. This species has moderate basic density when cultivated at spacings larger than 6 m2 and net heating value above 7.95 MJ/kg, which is suitable for bioenergy purposes. The high variation in wood properties within tree spacing is strongly indicative of great potential for genetic breeding. The fast growth and the suitable moderate wood basic density confirm the outstanding potential of homogeneous plantations of T. vulgaris for providing wood for bioenergy.

Keywords

Basic density Heating value Planting density Tachigali vulgaris 

Notes

Acknowledgements

The authors are grateful for the support provided by Agricultural Research Corporation of Amapá (EMBRAPA - Eastern Amazonia Unit), Amazonia Bank (BASA), Coordination for the Improvement of Higher Level Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and Jari Celulose S. A. Company.

References

  1. ABNT (The Brazilian Association of Technical Standards) (2003) NBR 11941–Wood: determination of basic density. ABNT, Rio de JaneiroGoogle Scholar
  2. Agbro EB, Ogie NA (2012) A comprehensive review of biomass resources and biofuel production potential in Nigeria. Res J Eng Appl Sci 1(3):149–155Google Scholar
  3. ASTM (American Society for Testing Materials) (2007) D1762-84 - Standard test method for chemical analysis of wood charcoal. ASTM, PhiladelphiaGoogle Scholar
  4. Barros SVS, Nascimento CC, Azevedo CP (2012) Energetic characterization of native and exotic forest species cultivated at Amazonas. Floresta 42(4):725–732CrossRefGoogle Scholar
  5. Bentancor L, Hernández J, del Pino A, Califra A, Resquín F, González-Barrios P (2019) Evaluation of the biomass production, energy yield and nutrient removal of Eucalyptus dunnii Maiden grown in short rotation coppice under two initial planting densities and harvest systems. Biomass Bioenergy 122:165–174CrossRefGoogle Scholar
  6. Berger R, Schneider PR, Finger CAG, Haselein CR (2002) Growth rate of Eucalyptus saligna Smith affected by spacing and fertilization. Ciênc Florest 12(2):75–87CrossRefGoogle Scholar
  7. Bilgic E, Yaman S, Haykiri-Acma H, Kucukbayrak S (2016) Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass? Biores Technol 200:201–207CrossRefGoogle Scholar
  8. Binkley D, Campoe OC, Alvares C, Carneiro RL, Cegatta I, Stape JL (2017) The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. For Ecol Manag 405(1):271–283CrossRefGoogle Scholar
  9. Brand MA (2010) Energia de biomassa florestal. Interciência, Rio de Janeiro, p 131Google Scholar
  10. Brand MA, Muñiz GIB, Quirino WF, Brito JO (2011) Storage as a tool to improve wood fuel quality. Biomass Bioenergy 35(7):2581–2588CrossRefGoogle Scholar
  11. Bustamante-García V, Carrillo-Parra A, González-Rodríguez H, Ramírez-Lozano RG, Corral-Rivas JJ, Garza-Ocañas F (2013) Evaluation of a charcoal production process from forest residues of Quercus sideroxyla Humb., & Bonpl. in a Brazilian beehive kiln. Ind Crops Prod 42:169–174CrossRefGoogle Scholar
  12. Carpanezzi AA, Marques LCT, Kanashiro M (1983) Aspectos ecológicos e silviculturais de taxi-branco-da-terra-firme (Sclerolobium paniculatum Vogel). https://www.researchgate.net/publication/242204833. Accessed 31 Oct 2018
  13. Carrillo I, Aguayo MG, Valenzuela S, Mendonça RT, Elissetche JP (2015) Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Res 60:1–10Google Scholar
  14. Choi HL, Sudiarto SIA, Renggaman A (2014) Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 116(15):772–780CrossRefGoogle Scholar
  15. Committee IAWA (1989) IAWA list of microscopic features for hardwood identification. In: Wheeler EA, Baas P, Gasson P (eds) IAWA Bulletin. State University of New York, New York, pp 219–332Google Scholar
  16. Costa KCP, Lima RMB, Ferreira MJ (2015) Biomass and energy yield of leguminous trees cultivated in Amazonas. Floresta 4(45):705–712CrossRefGoogle Scholar
  17. Csanády E, Magoss E, Tolvaj L (2015) Quality of machined wood surfaces. Springer, New York, p 257CrossRefGoogle Scholar
  18. Dacres OD, Tong S, Li X, Zhu X, Edreis EMA, Liu H, Luo G, Worasuwannarak N, Kerdsuwan S, Fungtammasan B, Yao H (2019) Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction. Energy Convers Manag 182(15):117–125CrossRefGoogle Scholar
  19. de Paula YL, Melo R da S, da Silva EDG, Alves AR, Boschetti WTN, de Holanda AC, Alves RC (2018) Wood characterization of Poincianella pyramidalis (TUL.) L.P. Queiroz. Cad Ciênc Tecnol 35(2):193–206Google Scholar
  20. de Souza JC, Pedrozo CA, da Silva K, Oliveira A, Ximendes V, Alencar AMDS (2019) Environments for seedling production and nodulation by rhizobia in Tachigali vulgaris. Ciênc Florest 29(1):116–129CrossRefGoogle Scholar
  21. Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20(1):105–111CrossRefGoogle Scholar
  22. Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230CrossRefGoogle Scholar
  23. Demolinari RA, Soares CPB, Leite HG, Souza AL (2007) Growth of unthinned clonal eucalyptus plantations in the region of Monte Dourado (PA). Rev Árvore 38(3):503–512CrossRefGoogle Scholar
  24. Eloy E, Caron BO, Silva DA, Souza VQ, Trevisa R, Behling A, Elli EF (2015) Energy productivity of forest species in short rotation plantings. Ciênc Rural 45(8):1424–1431CrossRefGoogle Scholar
  25. Eufrade-Junior HJ, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW (2016) Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioenergy 90:15–21CrossRefGoogle Scholar
  26. Eufrade-Junior HJ, Guerra SPS, Sansígolo CA, Ballarin AW (2018) Management of Eucalyptus short-rotation coppice and its outcome on fuel quality. Renew Energy 121:309–314CrossRefGoogle Scholar
  27. Farias J, Marimon BS, Silva LCR, Petter FA, Andrade FR, Morandi PS, Marimon-Junior BH (2016) Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla x Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For Ecol Manag 368(9):173–182CrossRefGoogle Scholar
  28. Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag 75(11):603–608CrossRefGoogle Scholar
  29. Fernandes C, Gaspar MJ, Pires J, Silva ME, Carvalho A, Brito JL, Lousada JL (2017) Within and between-tree variation of wood density components in Pinus sylvestris at five sites in Portugal. Eur J Wood Wood Prod 75:511–526CrossRefGoogle Scholar
  30. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Biores Technol 103(1):249–258CrossRefGoogle Scholar
  31. García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Biores Technol 139(1):1–4CrossRefGoogle Scholar
  32. García R, Pizarro C, Lavín AG, Bueno J (2014) Spanish biofuels heating value estimation. Part I: Ultimate analysis data. Fuel 117:1130–1138CrossRefGoogle Scholar
  33. Gil MV, González-Vázquez MP, García R, Rubiera F, Pevida C (2019) Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Convers Manag 184:649–660CrossRefGoogle Scholar
  34. Gominho J, Pereira H (2005) The influence of tree spacing in heartwood content in Eucalyptus globulus Labill. Wood Fiber Sci 37(4):582–590Google Scholar
  35. Hauk S, Knoke T, Wittkopf S (2014) Economic evaluation of short rotation coppice systems for energy from biomass - a review (2014). Renew Sustain Energy Rev 29:435–448CrossRefGoogle Scholar
  36. Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. Vitro Cell Dev Biol Plant 45(6):619–629PubMedCrossRefGoogle Scholar
  37. Huang H, Yuan X (2015) Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci 49:59–80CrossRefGoogle Scholar
  38. Huang C, Han L, Yang Z, Liu X (2009) Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manag 29(6):1793–1797PubMedCrossRefGoogle Scholar
  39. Hupa M, Karlström O, Vainio E (2016) Biomass combustion technology development—it is all about chemical details. Proc Combust Inst 36(1):113–134CrossRefGoogle Scholar
  40. Jiang L, Liang J, Yuan X, Li H, Li C, Xiao Z, Huang H, Zeng G (2014) Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Biores Technol 166:435–443CrossRefGoogle Scholar
  41. Jiang L, Yuan X, Xiao Z, Liang J, Li H, Cao L, Wang H, Chen X, Zeng G (2016) A comparative study of biomass pellet and biomass-sludge mixed pellet: energy input and pellet properties. Energy Convers Manag 126:509–515CrossRefGoogle Scholar
  42. Junior HJE, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW (2016) Sustainable use of Eucalyptus biomass grown on short rotation coppice for bioenergy. Biomass Bioenergy 90(3):15–21CrossRefGoogle Scholar
  43. Kopp RF, Abrahamso NLP, White EH, Nowak CA, Zsuffa L, Burns KF (1996) Wood grass spacing and fertilization effects on wood biomass production by a willow clone. Biomass Bioenergy 11(6):451–457CrossRefGoogle Scholar
  44. Leles PSS, Machado TFF, Alonso JM, Andrade AM, Silva LL (2014) Growth and biomass of Melia azedarach L. at different spacings and technological characteristics of wood for charcoal production. Floresta e Ambiente 21(2):214–223CrossRefGoogle Scholar
  45. Lin CJ, Chung CH, Yang TH, Lin FC (2012) Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia gymnosperm species. Silva Fennica 46(3):415–424CrossRefGoogle Scholar
  46. Mahishi MR, Goswami DY (2007) Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen Energy 32:3831–3840CrossRefGoogle Scholar
  47. Malan F, Hoon M (1992) Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. S Afr For J 163:13–20Google Scholar
  48. Meneses VA, Trugilho PF, Calegario N, Leite HG (2015) Effect of age and site on the basic density and dry mass of wood from a clone of Eucalyptus urophylla. Sci For 43(105):101–116Google Scholar
  49. Moulin JC, Arantes MDC, Oliveira JGL, Campinhos E, Gomes F, Vidaurre GB (2017) Effect of Spacing, age and irrigation on the volume and basic density in Eucalyptus. Floresta e Ambiente 24(1):1–10Google Scholar
  50. Neto S, Reis GG, Reis MGF, Neves JCL (2003) Biomass production and distribution in Eucalyptus camaldulensis Dehn. as influenced by fertilization and spacing. Rev Árvore 27(1):15–23CrossRefGoogle Scholar
  51. Paula J (2003) Anatomical characterization of seven woods from Amazonia for energy and paper production. Acta Amazonica 33(2):243–262CrossRefGoogle Scholar
  52. Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF (2013a) Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8(3):4574–4592CrossRefGoogle Scholar
  53. Pereira BLC, Oliveira AC, Carvalho AMML, Carneiro ACO, Vital BR, Santos LC (2013b) Correlations among the heart/sapwood ratio of eucalyptus wood, yield and charcoal properties. Sci For 41(98):217–225Google Scholar
  54. Pereira DTO, Nobre JRC, Bianchi ML (2019) Energy quality of waste from Brazil nut (Bertholletia excelsa), in the state of Pará. Braz J Dev 5(4):3258–3265Google Scholar
  55. Piotto D, Montagnini F, Ugalde L, Kanninen M (2003) Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. For Ecol Manag 175:195–204CrossRefGoogle Scholar
  56. Qiu Q, Yun G, Zuo S, Yan J, Hua L, Ren Y, Tang J, Li Y, Chen Q (2018) Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China. J For Res 5(29):1263–1276CrossRefGoogle Scholar
  57. Ramos LMA, Latorraca JVF, Pastro MS, Souza MT, Garcia RA, Carvalho AM (2011) Radial variation of wood anatomical characters of Eucalyptus grandis W. Hill Ex Maiden and age of transition between adult and juvenile Wood. Sci For 39(92):411–418Google Scholar
  58. Reis AA, Protásio TP, Melo ICNA, Trugilho PF, Carneiro ACO (2012) Wood composition and charcoal of Eucalyptus urophylla in different planting locations. Pesqui Florest Bras 32(71):277–290CrossRefGoogle Scholar
  59. Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR (2019) Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manag 438:63–74CrossRefGoogle Scholar
  60. Rocha MFV, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG (2016) Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J Trop For Sci 28(3):243–248Google Scholar
  61. Santos RC, Carneiro ACO, Vital BR, Castro RVO, Vidaurre GB, Trugilho PF, Castro AFNM (2016) Effect of properties chemical and siringil/guaiacil relation wood clones of eucalyptus in the production of charcoal. Ciênc Florest 26(2):657–669CrossRefGoogle Scholar
  62. Schwerz F, Eloy E, Elli EF, Caron BO (2019) Reduced planting spacing increase radiation use efficiency and biomass for energy in black wattle plantations: towards sustainable production systems. Biomass Bioenergy 120:229–239CrossRefGoogle Scholar
  63. Silva L, Lima H (2007) Nomenclatural changes in the genus Tachigali Aubl. (Leguminosae - Caesalpinioideae) in Brazil. Rodriguésia 58(2):397–401CrossRefGoogle Scholar
  64. Silva JC, Matos JLM, Oliveira JTS, Evangelista WV (2005) Influence of age and position along the trunk on the chemical composition of Eucalyptus grandis Hill ex. Maiden wood. Rev Árvore 29(3):455–460CrossRefGoogle Scholar
  65. Silva AR, Gonçalves DA, Sales A (2016) Tachi-branco performance in response to the combined fertilization of phosphorus and potassium in oxisol different. Acta Iguazu 2(5):37–48Google Scholar
  66. Simpson W, Tenwolde A (1999) Physical properties and moisture relations of wood. In: Forest Products Laboratory (ed) Wood handbook: wood as an engineering material. Forest Products Laboratory, Madison, pp 3–25Google Scholar
  67. Souza AP, Gaspar M, Tiné MAS, Buckeridge MS (2008) Biologia & mudanças climáticas no Brasil. Rima Editora, São Carlos, p 250Google Scholar
  68. Sturion JA, Pereira JCD, Chemin MS (1988) Wood quality of Eucalyptus viminalis for energy purpose in function of spacing and harvesting age. Bol Pesqui Florest 1(16):55–59Google Scholar
  69. Telmo C, Lousada J, Moreira N (2010) Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Biores Technol 101(18):3808–3815CrossRefGoogle Scholar
  70. Tenorio C, Moya R, Arias-Aguilar D, Briceño-Elizondo E (2016) Biomass yield and energy potential of short-rotation energy plantations of Gmelina arborea one year old in Costa Rica. Ind Crops Prod 82:63–73CrossRefGoogle Scholar
  71. The Brazilian tree industry-IBA (2017). http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf. Accessed 17 March 2018
  72. Tonini H, Schwengber DR, Morales MM, Oliveira JMF (2018) Growth and wood energy quality of Tachigali vulgaris in different spacing. Braz J For Res 38(1):1–8Google Scholar
  73. Trugilho PF, Arantes MDC, Pádua FA, Almado RP, Baliza AER (2010) Estimate of fixed carbon in the wood of a hybrid clone of Eucalyptus urophylla an Eucalyptus grandis. Cerne 16(5):33–40Google Scholar
  74. Trugilho PF, Goulart SL, Assis CO, Couto FBS, Alves ICN, Protásio TP, Napoli A (2015) Growing characteristics chemical composition physical and dry mass estimated of wood in young Eucalyptus species and clones. Ciênc Rural 45(4):661–666CrossRefGoogle Scholar
  75. Vale AT, Brasil MAM, Carvalho CM, Veiga RAA (2000) Energy production of stem of Eucalyptus grandis Hill ex Maiden and Acacia mangium Willd in different levels of fertilization. Cerne 6(1):83–88Google Scholar
  76. Vale AT, Brasil MAM, Leão AL (2002) Energetic quantification and characterization of wood and bark of species of “Cerrado”. Ciênc Florest 1(12):71–80CrossRefGoogle Scholar
  77. Wu SJ, Xu JM, Li GY, Du ZH, Lu ZH, Li BQ (2012) Age trends and correlations of growth and wood properties in clone of Eucalyptus urophylla × Eucalyptus grandis in Guangdong, China. J For Res 23(3):467–472CrossRefGoogle Scholar
  78. Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90(3):1128–1132CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Marilene Olga dos Santos Silva
    • 1
  • Marcela Gomes da Silva
    • 1
  • Lina Bufalino
    • 1
    Email author
  • Maíra Reis de Assis
    • 2
  • Delman de Almeida Gonçalves
    • 3
  • Paulo Fernando Trugilho
    • 2
  • Thiago de Paula Protásio
    • 4
  1. 1.Rural Federal University of Amazonia/UFRABelémBrazil
  2. 2.Federal University of Lavras/UFLALavrasBrazil
  3. 3.Brazilian Agricultural Research Corporation/Eastern Amazonia EmbrapaBelémBrazil
  4. 4.Rural Federal University of Amazonia/UFRAParauapebasBrazil

Personalised recommendations