Advertisement

Visual grading criteria for Japanese larch (Larix kaempferi) structural timber from Spain

  • Mari-Jose Barriola
  • José-Ramón AiraEmail author
  • Edgar Lafuente
Original Paper
  • 28 Downloads

Abstract

Larch wood is structurally classified in many countries as one of conifers with the highest load-bearing capacity (strength class of C30). The Spanish visual classification regulation only assigns a strength class to 4 pine woods: Laricio pine (Pinus nigra Arn. var. Salzmannii), Silvestre pine (Pinus sylvestris L.), Radiata pine (Pinus radiata D. Don), and Pinaster pine (Pinus pinaster Ait.). This work adds to the number of structurally characterised species by creating a visual classification table for Japanese larch wood (Larix kaempferi (Lamb.) Carr.) which differentiates between 2 visual classes, MEG-1 and MEG-2. Characteristic strength values were calculated for each class (fk,MEG-1 = 31.80 MPa, fk,MEG-2 = 24.55 MPa), mean module of elasticity (E0,mean,MEG-1 = 13,082 MPA, E0,mean,MEG-2 = 12,320 MPA) and density (ρk,MEG-1 = 456.6 kg m−3, ρk,MEG-2 = 469.1 kg m−3), before finally assigning a strength class of C30 to visual class MEG-1, and a strength class of C24 to visual class MEG-2.

Keywords

Japanese larch wood Visual grading Strength class Mechanical properties Density 

Notes

Acknowledgements

We thanks to Basque centre of research and applied innovation in vet (TKNIKA), Centre for services and promotion of Castilla y León forestry and its industry (CESEFOR), D. Bixente Dorronsoro, Gipuzkoa provincial council, and Commercial services of the wood of Guipuzkoa (SECOMA). Larrañaga sawmill (Azpeitia).

References

  1. BS 4978:2007+A2:2017 Visual strength grading of softwood—specification. British Standard Institution (BSI), London, United KingdomGoogle Scholar
  2. Bunetti M, Burato P, Cremonini C, Negro F, Nocetti M, Zanuttini R (2016) Visual and machine grading of larch (Larix decidua Mill.) structural timber from the Italian Alps. Mater Struct 49:2681–2688.  https://doi.org/10.1617/s11527-015-0676-5 CrossRefGoogle Scholar
  3. Cáceres CB, Hernández RE, Fortin Y, Beaudoin M (2017) Wood density and extractive content variation among Japanese larch (Larix kaempferi [Lamb.] Carr.) progenies/provenances trials in eastern Canada. Wood Fiber Sci 49(4):363–372Google Scholar
  4. Dauksta D (2011) Japanese larch in Wales. Wales Forest Business Partnership, Woodknowledge Wales, p 28Google Scholar
  5. Dauksta D (2015) Japanese larch: how cultural differences incluence utilization of timber. Wiston Churchill Memorial Trust, The Frank Jackson Fundation, p 57Google Scholar
  6. EN 338:2016. Structural timber—strength classes. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  7. EN 384:2016. Structural timber—determination of characteristic values of mechanical properties and density. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  8. EN 408:2010+A1:2012. Timber structures—structural timber and glued laminated timber—determination of some physical and mechanical properties. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  9. EN 1309-3:2018. Round and sawn timber—methods of measurements—part 3: features and biological degradations. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  10. EN 1912:2012. Structural timber—strength classes—assignment of visual grades and species. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  11. EN 14081-1:2016. Timber structures—strength graded structural timber with rectangular cross section—part 1: general requirements. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  12. EN 14358:2016. Timber structures—calculation and verification of characteristic values. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  13. EN 14081-2:2018. Timber structures—strength graded structural timber with rectangular cross section—part 2: machine grading. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  14. EN 14081-3:2012+A1:2018. Timber structures—strength graded structural timber with rectangular cross section—part 3: machine grading; additional requirements for factory production control. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  15. Fortuna B, Plos M, Šuligoj T, Turk G (2018) Strength grading of structural timber. Udruga hrvatskih građevinskih fakulteta.  https://doi.org/10.31534/CO/ZT.2018.09 CrossRefGoogle Scholar
  16. Jeong GY, Park MJ (2016) Evaluate orthotropic properties of wood using digital image correlation. Constr Build Mater 113:864–869.  https://doi.org/10.1016/j.conbuildmat.2016.03.129 CrossRefGoogle Scholar
  17. Jung-Kwon O, Kwang-Mo K, Jun-Jae L (2010) Use of adjacent knot data in predicting bending strength of dimension lumber by X-ray. Wood Fiber Sci 42(1):10–20Google Scholar
  18. Luo WL, Ren HQ, Wang ZH, Luo XQ (2012) Mechanical grading of structural larch dimension lumber. Key Eng Mater 517:683–688.  https://doi.org/10.4028/www.scientific.net/KEM.517.683 CrossRefGoogle Scholar
  19. Moriguchi K, Schibata N, Imai M, Yamanouchi M, Yoshida T (2016) Optimizing the parameters of a knot assessment model based on the visual grading of JAS of lumber. Jpn Wood Res Soc J-Stage 62(4):133–145.  https://doi.org/10.2488/jwrs.62.133 CrossRefGoogle Scholar
  20. NFB 52-001-1:2018. Règles d´utilisation du bois dans les constructions—classement visual pour employen structure pour les principales essences résineuses et feuillues Partie 1: Bois massif. French Standards Association (AFNOR), ParisGoogle Scholar
  21. Ridley-Ellis D, Stapel P, Baño V (2016) Strength grading of sawn timber in Europe: an explanation for engineers and researchers. Eur J Wood Prod.  https://doi.org/10.1007/s00107-016-1034-1 CrossRefGoogle Scholar
  22. Takeda T, Hashizume T (1999) Differences of tensile strength distribution between mechanically high-grade and low-grade Japanese larch lumber II: effect of knots on tensile strength distribution. J Wood Sci 45:207–212.  https://doi.org/10.1007/BF01177727 CrossRefGoogle Scholar
  23. UNE 56544:2011. Clasificación visual de la madera aserrada para uso estructural. Madera de coníferas. Spanish Association for Standardization (UNE), MadridGoogle Scholar
  24. UNI 11035-2:2010. Legno strutturale—Classificazione a vista dei legnami secondo la resistenza meccanica—parte 2: regole per la classificazione a vista secondo la resistenza meccanica e valori caratteristici per tipi di legname strutturale. Italian National Unification Body (UNI), RomeGoogle Scholar
  25. Zhu J, Nakano T, Tokumoto M (2000) Variation of tensile strength with annual rings for lumber from the Japanese larch. J Wood Sci 46:284–288CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Mari-Jose Barriola
    • 1
  • José-Ramón Aira
    • 2
    Email author
  • Edgar Lafuente
    • 3
  1. 1.Tknika, LHri Aplikatutako Ikerketa eta Berrikuntzako EAEko zentroaErrenteriaSpain
  2. 2.Escuela de Ingeniería de la Industria Forestal, Agronómica y de la BioenergíaUniversidad de ValladolidSoriaSpain
  3. 3.Cesefor, Centro de Servicios y Promoción Forestal y de su Industria de Castilla y LeónSoriaSpain

Personalised recommendations