Advertisement

Small-scale edaphic heterogeneity as a floristic–structural complexity driver in Seasonally Dry Tropical Forests tree communities

  • Cléber Rodrigo de SouzaEmail author
  • Jean Daniel Morel
  • Alisson Borges Miranda Santos
  • Wilder Bento da Silva
  • Vinícius Andrade Maia
  • Polyanne Aparecida Coelho
  • Vanessa Leite Rezende
  • Rubens Manoel dos Santos
Original Paper
  • 12 Downloads

Abstract

Our work aimed to test the hypothesis that soil microscale heterogeneity act as a community ecological driver, increasing diversity and promoting structural shifts on the Seasonally Dry Tropical Forest (SDTF) tree community. We evaluated the relationship between microscale edaphic variations and floristic–structural patterns of tree communities in a SDTF fragment located in the southern end of the Brazilian Caatinga domain. Vegetation and soil data were obtained through 27 sample units of 400 m2 (20 m × 20 m), within each one we measured and identified at species level all arboreal individuals with Circumference at the Breast Height greater or equal to 10 cm, and also collected the soil samples. Through the data we evaluated soil variation influence on the tree community structural and floristic patterns trough generalized linear models. Soil explained the small-scale structural and floristic variations, contributing significantly to biomass, sprouting and to floristic relationships between sample units. It was also observed a possible relation of the result with the Caatinga domain biogeographic history, due the presence of Sedimentary Caatinga species, which are not expected for the study region. Soil plays an important role in driving small-scale complexity and diversity of SDTF, but we also suggest that Caatinga biogeographic events have influence on the high heterogeneity patterns.

Keywords

Caatinga domain Edaphic variables Sprouting Sedimentary Caatinga 

Notes

Acknowledgements

To Federal University of Lavras, Foundation for the Support to the Researches in Minas Gerais (FAPEMIG), Brazilian National Council for Scientific and Technological Development (CNPq) and to Coordination for the Improvement of Higher Education Personnel (CAPES) for all the support.

Supplementary material

11676_2019_1013_MOESM1_ESM.docx (43 kb)
Supplementary file1 (DOCX 42 kb)

References

  1. Ab'Saber A (1974) O domínio morfoclimático semiárido das caatingas brasileiras. Universidade de São Paulo, São PauloGoogle Scholar
  2. Allen K, Dupuy JM, Gei MG, Hulshof C, Medvigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, Van Bloem SJ, Waring BG, Xu X, Powers JS (2017) Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ Res Lett 12(2):023001.  https://doi.org/10.1088/1748-9326/aa5968 CrossRefGoogle Scholar
  3. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20.  https://doi.org/10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  4. Apgaua DMG, Coelho PA, Santos RMD, Santos PF, Oliveira-Filho ATD (2014) Tree community structure in a seasonally dry tropical forest remnant, Brazil. Cerne 20(2):173–182.  https://doi.org/10.1590/01047760.201420021540 CrossRefGoogle Scholar
  5. Apgaua DMG, Pereira DGS, Santos RM, Menino GCO, Pires GG, Fontes MAL, Tng DYP (2015) Floristic variation within seasonally dry tropical forests of the Caatinga Biogeographic Domain, Brazil, and its conservation implications. Int For Rev 17(S2):33–44.  https://doi.org/10.1505/146554815815834840 Google Scholar
  6. Arruda DM, Fernandes-Filho EI, Solar RR, Schaefer CE (2017) Combining climatic and soil properties better predicts covers of Brazilian biomes. Sci Nat 104(3–4):32.  https://doi.org/10.1007/s00114-017-1456-6 CrossRefGoogle Scholar
  7. Bagousse-Pinguet YL, Gross N, Maestre FT, Maire V, Bello F, Fonseca CR, Kattge J, Valencia E, Leps J, Liancourt P (2017) Testing the environmental filtering concept in global drylands. J Ecol 105:1058–1069.  https://doi.org/10.1111/1365-2745.12735 CrossRefGoogle Scholar
  8. Baker TR, Phillips OL, Laurance WF, Pitman NCA, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Nascimento H, Monteagudo A, Neill DA, Silva JNM, Malhi Y, López-Gonzalez G, Peacock J, Quesada CA, Lewis SL, Lloyd J (2009) Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6:297–307.  https://doi.org/10.5194/bg-6-297-2009 CrossRefGoogle Scholar
  9. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19(1):134–143.  https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  10. Baselga A (2013) Betapart-package: partitioning beta diversity into turnover and nestedness components. R package version 1.3. https://CRAN.R-project.org/package=betapart. Accessed 19 April 2017
  11. Becknell JM, Powers JS (2014) Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can J For Res 44(6): 604–613.  https://doi.org/10.1139/cjfr-2013-0331 CrossRefGoogle Scholar
  12. Becknell JM, Kucek LK, Powers JS (2012) Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For Ecol Manag 276:88–95.  https://doi.org/10.1016/j.foreco.2012.03.033 CrossRefGoogle Scholar
  13. Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. J Veg Sci 19(6):863–874.  https://doi.org/10.3170/2008-8-18463 CrossRefGoogle Scholar
  14. Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16(1):45–51.  https://doi.org/10.1016/S0169-5347(00)02033-4 CrossRefGoogle Scholar
  15. Bond WJ, Midgley JJ (2003) The evolutionary ecology of sprouting in woody plants. Int J Plant Sci 164(S3):S103–S114CrossRefGoogle Scholar
  16. Bueno ML, Dexter KG, Pennington RT, Pontara V, Neves DM, Ratter JA, Oliveira-Filho AT (2018) The environmental triangle of the Cerrado Domain: ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106(5):2109–2120.  https://doi.org/10.1111/1365-2745.12969 CrossRefGoogle Scholar
  17. Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol 32(6):429–437.  https://doi.org/10.1016/j.tree.2017.03.004 CrossRefGoogle Scholar
  18. Castellanos-Castro C, Newton AC (2015) Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica 47(6):660–671.  https://doi.org/10.1111/btp.12245 CrossRefGoogle Scholar
  19. Ceccon E, Sánchez S, Campo J (2004) Tree seedling dynamics in two abandoned tropical dry forests of differing successional status in Yucatán, Mexico: a field experiment with N and P fertilization. Plant Ecol 170(2):277–285.  https://doi.org/10.1023/B:VEGE.0000021699.63151.47 CrossRefGoogle Scholar
  20. Ceccon E, Huante P, Rincón E (2006) Abiotic factors influencing tropical dry forests regeneration. Braz Arch Biol Technol 49(2):305–312.  https://doi.org/10.1590/S1516-89132006000300016 CrossRefGoogle Scholar
  21. Chapin S III, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J Ecol 97(5):840–850.  https://doi.org/10.1111/j.1365-2745.2009.01529.x CrossRefGoogle Scholar
  22. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190.  https://doi.org/10.1111/gcb.12629 CrossRefGoogle Scholar
  23. Chesson P (2000) Mechanisms of maintenance of species diversity. Ann Rev Ecol Syst 31(1):343–366.  https://doi.org/10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  24. Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuuring H (1995) Prediction of neotropical tree and liana species richness from soil and climatic data. Biodivers Conserv 4(1):56–90.  https://doi.org/10.1007/bf00115314 CrossRefGoogle Scholar
  25. DRYFLOR (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353(6306):1383–1387.  https://doi.org/10.1126/science.aaf5080 CrossRefGoogle Scholar
  26. Gómez-Aparicio L, Jose M, Zamora R (2005) Microhabitats shift rank in suitability for seedling establishment depending on habitat type and climate. J Ecol 93(6):1194–1202.  https://doi.org/10.1111/j.1365-2745.2005.01047.x CrossRefGoogle Scholar
  27. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89(6):947–959.  https://doi.org/10.1111/j.1365-2745.2001.00615.x CrossRefGoogle Scholar
  28. Hart S, Marshall DJ (2013) Environmental stress, facilitation, competition, and coexistence. Ecology 94(12):2719–2731.  https://doi.org/10.1890/12-0804.1 CrossRefGoogle Scholar
  29. Huston M (1980) Soil nutrients and tree species richness in Costa Rican forests. J Biogeogr 7(2):147–157CrossRefGoogle Scholar
  30. Hutchings MJ, John EA, Wijesinghe DK (2003) Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 84(9):2322–2334.  https://doi.org/10.1890/02-0290 CrossRefGoogle Scholar
  31. IPCC (2014) Climate change 2013: the physical science basis: Working Group I contribution to the 5th assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, LondonGoogle Scholar
  32. Jenny H (1980) The soil resource origin and behaviour. Ecological studies. Springer, Berlin.  https://doi.org/10.1007/978-1-4612-6112-4 Google Scholar
  33. John R, Dalling JH, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci 104(3):864–869.  https://doi.org/10.1073/pnas.0604666104 CrossRefGoogle Scholar
  34. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A 374(2065):20150202.  https://doi.org/10.1098/rsta.2015.0202 CrossRefGoogle Scholar
  35. Jones MM, Szyska B, Kessler M (2011) Microhabitat partitioning promotes plant diversity in a tropical montane forest. Glob Ecol Biogeogr 20(4):558–569.  https://doi.org/10.1111/j.1466-8238.2010.00627.x CrossRefGoogle Scholar
  36. Krishnadas M, Kumar A, Comita LS (2016) Environmental gradients structure tropical tree assemblages at the regional scale. J Veg Sci 27(6):1117–1128.  https://doi.org/10.1111/jvs.12438 CrossRefGoogle Scholar
  37. Lai J, Mi X, Ren H, Ma K (2009) Species-habitat associations change in a subtropical forest of China. J Veg Sci 20(3):415–423CrossRefGoogle Scholar
  38. Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91(2):386–398.  https://doi.org/10.1890/08-1449.1 CrossRefGoogle Scholar
  39. Markesteijn L, Iraipi J, Bongers F, Poorte L (2010) Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J Trop Ecol 26(5):497–508CrossRefGoogle Scholar
  40. Meinders M, Van Breemen N (2005) Formation of soil–vegetation patterns. In: Lovett GM, Jones C, Turner MG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York, pp 207–227CrossRefGoogle Scholar
  41. Moreira B, Tormo J, Pausas JG (2012) To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121(10):1577–1584.  https://doi.org/10.1111/j.1600-0706.2011.20258.x CrossRefGoogle Scholar
  42. Moro MF, Lughadha EN, Filer DL, Araújo FS, Martins FR (2014) A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: a synthesis of floristic and phytosociological surveys. Phytotaxa 160(1):1–118.  https://doi.org/10.11646/phytotaxa.160.1.1 CrossRefGoogle Scholar
  43. Moro MF, Lughadha EN, Araújo FS, Martins FR (2016) A phytogeographical metaanalysis of the semiarid Caatinga domain in Brazil. Bot Rev 82(2):91–148.  https://doi.org/10.1007/s12229-016-9164-z CrossRefGoogle Scholar
  44. Munoz F, Ramesh BR, Couteron P (2014) How do habitat filtering and niche conservatism affect community composition at different taxonomic resolutions? Ecology 95(8):2179–2191.  https://doi.org/10.1890/13-0064.1 CrossRefGoogle Scholar
  45. Neves DM, Dexter KG, Pennington RT, Valente ASM, Bueno ML, Eisenlohr PV, Fontes MAL, Miranda PLS, Moreira SN, Rezende VL, Saiter FZ, Oliveira-Filho AT (2017) Dissecting a biodiversity hotspot: the importance of environmentally marginal habitats in the Atlantic Forest Domain of South America. Divers Distrib 23(8):898–909.  https://doi.org/10.1111/ddi.12581 CrossRefGoogle Scholar
  46. Oksanen J, Blanchet FJ, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2.4-2. https://cran.r-project.org/package=vegan. Acessed 19 april 2017.
  47. Oliveira-Filho AT (2017) NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. www.icb.ufmg.br/treeatlan. Accessed 19 April 2017
  48. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52(2):141–194.  https://doi.org/10.1017/S0960428600000949 CrossRefGoogle Scholar
  49. Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci 12(2):153–166.  https://doi.org/10.2307/3236601 CrossRefGoogle Scholar
  50. Pausas JG, Keeley JE (2014) Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol 204(1):55–65.  https://doi.org/10.1111/nph.12921 CrossRefGoogle Scholar
  51. Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S, Kaneakua-Pia IN, Davis SD (2016) Towards understanding resprouting at the global scale. New Phytol 209(3):945–954.  https://doi.org/10.1111/nph.13644 CrossRefGoogle Scholar
  52. Peña-Claros M, Poorter L, Alarcón A, Blate G, Choque U, Fredericksen TS, Justiniano MJ, Leaño C, Licona JC, Pariona W, Putz FE, Quevedo L, Toledo M (2012) Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44(3):276–283.  https://doi.org/10.1111/j.1744-7429.2011.00813.x CrossRefGoogle Scholar
  53. Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27(2):261–273.  https://doi.org/10.1046/j.1365-2699.2000.00397.x CrossRefGoogle Scholar
  54. Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40(1):437–457CrossRefGoogle Scholar
  55. Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sánchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91(5):757–775.  https://doi.org/10.1046/j.1365-2745.2003.00815.x CrossRefGoogle Scholar
  56. Pinho BX, Melo FPL, Arroyo-Rodríguez V, Pierce S, Lohbeck M, Tabarelli M (2017) Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. J Ecol 2017:1–11.  https://doi.org/10.1111/1365-2745.12843 Google Scholar
  57. Poulsen AD, Tuomisto H, Balslev H (2006) Edaphic and floristic variation within a 1-ha plot of lowland amazonian rain forest. Biotropica 38(4):468–478.  https://doi.org/10.1111/j.1744-7429.2006.00168.x CrossRefGoogle Scholar
  58. Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Mo Bot Gard 80(4):902–927CrossRefGoogle Scholar
  59. Putten WHV, Bradford MA, Brinkman EP, van de Voorde TFJ, Veen GF (2016) Where, when and how plant–soil feedback matters in a changing world. Funct Ecol 30(7):1109–1121.  https://doi.org/10.1111/1365-2435.12657 CrossRefGoogle Scholar
  60. Queiroz LP (2006) The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography, and conservation. CRC Press, Boca Raton, pp 113–149Google Scholar
  61. R version 3.3.1 (2016) "Bug in Your Hair" Copyright (C). The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit). https://wallace.teorekol.lu.se/statistics_for_biologists/01/R%20output%20ex1%20ht16.pdf. Accessed 19 April 2017
  62. Reis GH, Terra MS, Tng DP, Apgaua DMG, Coelho PA, Santos RM, Nunes YF (2017) Temporal vegetation changes in a seasonally dry tropical forest enclave in an ecotonal region between savanna and semiarid zones of Brazil. Aust J Bot 65(1):85.  https://doi.org/10.1071/bt16188 CrossRefGoogle Scholar
  63. Rejou-Mechain M, Tanguy A, Piponiot C, Chave J, Hérault B (2017) Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8(9):1163–1167.  https://doi.org/10.1111/2041-210X.12753 CrossRefGoogle Scholar
  64. Ribeiro-Neto JD, Arnan X, Tabarelli M, Leal IR (2016) Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers Conserv 25(5):943–956CrossRefGoogle Scholar
  65. Rito KF, Tabarelli M, Leal IR (2017) Euphorbiaceae responses to chronic anthropogenic disturbances in Caatinga vegetation: from species proliferation to biotic homogenization. Plant Ecol 218(6):749–759.  https://doi.org/10.1007/s11258-017-0726-x CrossRefGoogle Scholar
  66. Sander J, Wardell-Johnson G (2011) Fine-scale patterns of species and phylogenetic turnover in a global biodiversity hotspot: implications for climate change vulnerability. J Veg Sci 22(5):766–780.  https://doi.org/10.1111/j.1654-1103.2011.01293.x CrossRefGoogle Scholar
  67. Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M (2011) Caatinga: the scientific negligence experienced by a dry tropical forest. Trop Conserv Sci 4(3):276–286.  https://doi.org/10.1177/194008291100400306 CrossRefGoogle Scholar
  68. Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol 2:409–428.  https://doi.org/10.1002/ece3.91 CrossRefGoogle Scholar
  69. Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD (2014) Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theor Exp Plant Physiol 26:83–99.  https://doi.org/10.1007/s40626-014-0008-0 CrossRefGoogle Scholar
  70. Scolforo JRS, Mello JM (1997) Inventário Florestal. UFLA-FAEPE, Lavras Google Scholar
  71. Seiler C, Hutjes RWA, Kruijt B, Hickler T (2015) The sensitivity of wet and dry tropical forests to climate change in Bolivia. J Geophys Res Biogeosci 120:399–413.  https://doi.org/10.1002/2014JG002749 CrossRefGoogle Scholar
  72. Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD (2012) Scale dependence of vegetation–environment relationships: a meta-analysis of multivariate data. J Veg Sci 23(5):942–951.  https://doi.org/10.1111/j.1654-1103.2012.01401.x CrossRefGoogle Scholar
  73. Sollins P (1998) Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79(1):23–30. https://doi.org/10.1890/0012-9658(1998) 079[0023:FISCIT]2.0.CO;2CrossRefGoogle Scholar
  74. Sunderland TCH, Apgaua D, Baldauf C, Blackie R, Colfer CJP, Cunningham AB, Dexter K, Djoudi H, Gautier D, Gumbo D, Ickowitz A, Kassa H, Parthasarathy N, Pennington RT, Paumgarten F, Pulla S, Sola P, Tng D, Waeber P, Wilmé L (2015) Global dry forests: a prologue. Int For Rev 17(S2):1–9.  https://doi.org/10.1505/146554815815834813 Google Scholar
  75. Tricart J (1985) Evidence of Upper Pleistocene dry climates in Northern South America. In: Douglas I, Spencer T (eds) Environmental change and tropical geomorphology. Allen & Unwin, London, pp 197–217Google Scholar
  76. Tuomisto H, Ruokolainen K, Poulsen AD, Moran RC, Quintana C, Cañas G, Celi J (2002) Distribution and diversity of Pteridophytes and Melastomataceae along edaphic gradients in Yasuní National Park, Ecuadorian Amazon. Biotropica 34(4):516–533.  https://doi.org/10.1646/0006-3606(2002)034[0516:dadopa]2.0.co;2 Google Scholar
  77. Velloso AL, Sampaio EVSB, Pareyn FGC (2002) Ecorregiões: Propostas para o bioma Caatinga Associação Plantas do Nordeste, Instituto de Conservação Ambiental The Nature Conservancy do Brasil Recife, p 76Google Scholar
  78. Vleminckx J, Drouet T, Amani C, Lisingo J, Lejoly J, Hardy OJ (2015) Impact of fine-scale edaphic heterogeneity on tree species assembly in a central African rainforest. J Veg Sci 26(1):134–144.  https://doi.org/10.1111/jvs.12209 CrossRefGoogle Scholar
  79. Wang X, Chu X, Liu T, Cheng X, Whittecar R (2017) Water–soil–vegetation dynamic interactions in changing climate. Water 9(10):740CrossRefGoogle Scholar
  80. Xu X, Medvigy D, Powers JS, Becknell JM, Guan K (2016) Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol 212:80–95.  https://doi.org/10.1111/nph.14009 CrossRefGoogle Scholar
  81. Zeppel MJB, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A, West AG, McDowell NG (2015a) Drought and resprouting plants. New Phytol 206(2):583–589.  https://doi.org/10.1111/nph.13205 CrossRefGoogle Scholar
  82. Zeppel MJB, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A et al (2015b) Drought and resprouting plants. New Phytol 206(2):583–589CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Cléber Rodrigo de Souza
    • 1
    Email author
  • Jean Daniel Morel
    • 1
  • Alisson Borges Miranda Santos
    • 1
  • Wilder Bento da Silva
    • 1
  • Vinícius Andrade Maia
    • 1
  • Polyanne Aparecida Coelho
    • 1
  • Vanessa Leite Rezende
    • 2
  • Rubens Manoel dos Santos
    • 1
  1. 1.Forest Sciences DepartamentFederal University of LavrasLavrasBrazil
  2. 2.Biology DepartmentFederal University of LavrasLavrasBrazil

Personalised recommendations