Advertisement

Carbon accumulations by stock change approach in tropical highland forests of Chiapas, Mexico

  • Deb R. AryalEmail author
  • Roldan Ruiz-Corzo
Original Paper

Abstract

Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration. Human activities such as livestock grazing, forest fires, selective logging and firewood extraction are the common disturbances that affect the carbon dynamics of the forest ecosystems. Here, we hypothesized that such anthropogenic activities significantly reduce the carbon stocks and accumulation rates in the tropical highland forests of the Sierra Madre de Chiapas in Southern Mexico. We sampled the Pinus oocarpa Scheide dominated forests within the elevation range of 900 to 1100 m above sea level in 2010, 2014 and 2017. We measured the stand structural properties and used the reported allometric equations to calculate the tree carbon stocks. Stock change approach was used to calculate carbon accumulation rates. The results showed a gradual increase in carbon storage over the 7-year period from 2010 to 2017, but the rate of increase varied significantly between the study sites. The aboveground carbon stock was 107.25 ± 11.77 Mg ha−1 for the site with lower anthropogenic intensity, compared to 74.29 ± 16.85 Mg ha−1 for the site with higher intensity. The current annual increment for the forest with lower anthropogenic intensity was 7.81 ± 0.65 Mg ha−1 a−1, compared to 3.87 ± 1.03 Mg ha−1 a−1 in the site with high anthropogenic intensity. Although at varying rates, these forests are functioning as important carbon sinks. The results on carbon accumulation rates have important implications in greenhouse gas mitigations and forest change modelling in the context of changing global climate.

Keywords

Anthropogenic disturbances Biomass Carbon accumulation rates Forest carbon pools Forest structure Southern Mexico 

Notes

Acknowledgements

We thank BIOMASA A.C. and Mexico REDD + program for supporting part of the fieldwork. We are thankful to Carrie Mitchell for English revision of the manuscript. We acknowledge the constructive comments from the reviewers on the earlier version of the article.

References

  1. Acosta-Mireles M, Carrillo-Anzures F, Díaz Lavariega M (2009) Determinación del carbono total en bosques mixtos de Pinus patula Schl. et cham. Terra Latinoam 27:105–114Google Scholar
  2. Aguirre-Calderón OA, Jiménez-Pérez J (2011) Evaluación del contenido de carbono en bosques del sur de Nuevo León. Rev Mex Cienc For 2:73–84Google Scholar
  3. Alberto D, Elvir J (2008) Carbon accumulation and fixation in aerial biomass of Pinus oocarpa in natural forests in Honduras. For Syst 17:67–78Google Scholar
  4. Álvarez S, Rubio A (2013) Línea base de carbono en bosque mixto de pino-encino de la Sierra Juárez (Oaxaca, México): aplicación del modelo CO2FIX v. 3.2. Rev Chapingo Ser Cienc For Ambiente 19:125–137Google Scholar
  5. Aryal DR, De Jong BH, Ochoa-Gaona S et al (2014) Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ 195:220–230CrossRefGoogle Scholar
  6. Aryal DR, De Jong BH, Ochoa-Gaona S et al (2015) Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosys 103:45–60CrossRefGoogle Scholar
  7. Aryal DR, Castro HG, García NDC et al (2018) Potencial de almacenamiento de carbono en áreas forestales en un sistema ganadero. Rev Mex Cienc For 9:150–180Google Scholar
  8. Aryal DR, Gómez-González RR, Hernández-Nuriasmú R, Morales-Ruiz DE (2019) Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor Syst 93:213–227.  https://doi.org/10.1007/s10457-018-0310-y CrossRefGoogle Scholar
  9. Balvanera P, Kremen C, Martínez-Ramos M (2005) Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol Appl 15:360–375CrossRefGoogle Scholar
  10. Berenguer E, Ferreira J, Gardner TA et al (2014) A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob Change Biol 20:3713–3726CrossRefGoogle Scholar
  11. Birdsey R, Pan Y (2015) Trends in management of the world’s forests and impacts on carbon stocks. For Ecol Manag 355:83–90CrossRefGoogle Scholar
  12. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449CrossRefGoogle Scholar
  13. Bustamante M, Roitman I, Aide TM et al (2016) Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob Change Biol 22:92–109CrossRefGoogle Scholar
  14. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefGoogle Scholar
  15. Cairns MA, Haggerty PK, Alvarez R et al (2000) Tropical Mexico's recent land-use change: a regions's contribution to the global carbon cycle. Ecol Appl 10:1426–1441CrossRefGoogle Scholar
  16. Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132CrossRefGoogle Scholar
  17. Campos EMZ, Cuecuecha OGV, Ahuatzi AP et al (2007) Variación natural de la densidad de la madera en Pinus montezumae Lamb. en tres altitudes del parque nacional la Malinche, Tlaxcala, México. For Veracruzana 9:33–37Google Scholar
  18. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456.  https://doi.org/10.1126/science.1155458 CrossRefGoogle Scholar
  19. Cayuela L, Golicher DJ, Benayas J et al (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol 43:1172–1181CrossRefGoogle Scholar
  20. Chaplin-Kramer R, Ramler I, Sharp R et al (2015) Degradation in carbon stocks near tropical forest edges. Nat Commun 6:10158CrossRefGoogle Scholar
  21. Chave J, Condit R, Lao S et al (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252CrossRefGoogle Scholar
  22. Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6:51–71.  https://doi.org/10.1078/1433-8319-00042 CrossRefGoogle Scholar
  23. Chazdon RL, Letcher SG, Van Breugel M et al (2007) Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos Trans R Soc B 362:273–289CrossRefGoogle Scholar
  24. Chen L-C, Liang M-J, Wang S-L (2016) Carbon stock density in planted versus natural Pinus massoniana forests in sub-tropical China. Ann For Sci 73:461–472.  https://doi.org/10.1007/s13595-016-0539-4 CrossRefGoogle Scholar
  25. Ciais P, Sabine C, Bala G et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds ) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Cohen WB, Yang Z, Stehman SV et al (2016) Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. For Ecol Manag 360:242–252CrossRefGoogle Scholar
  27. Collas L, Green RE, Ross A et al (2017) Urban development, land sharing and land sparing: the importance of considering restoration. J Appl Ecol 54:1865–1873CrossRefGoogle Scholar
  28. Cortina-Villar S, Plascencia-Vargas H, Vaca R et al (2012) Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environ Manag 49:649–662CrossRefGoogle Scholar
  29. De Jong BHJ (2013) Spatial distribution of biomass and links to reported disturbances in tropical lowland forests of southern Mexico. Carbon Manag 4:601–615CrossRefGoogle Scholar
  30. De Jong BH, Cairns MA, Haggerty PK et al (1999) Land-use change and carbon flux between 1970s and 1990s in central highlands of Chiapas, Mexico. Environ Manage 23:373–385CrossRefGoogle Scholar
  31. De Jong B, Anaya C, Masera O et al (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag 260:1689–1701CrossRefGoogle Scholar
  32. De Vos B, Lettens S, Muys B, Deckers JA (2007) Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manag 23:221–229CrossRefGoogle Scholar
  33. Edwards DP, Tobias JA, Sheil D et al (2014) Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol 29:511–520CrossRefGoogle Scholar
  34. Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911CrossRefGoogle Scholar
  35. Enquist BJ, Kerkhoff AJ, Huxman TE, Economo EP (2007) Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. Glob Change Biol 13:591–609CrossRefGoogle Scholar
  36. Erb KH, Kastner T, Luyssaert S et al (2013) Bias in the attribution of forest carbon sinks. Nat Clim Change 3:854CrossRefGoogle Scholar
  37. Fehse J, Hofstede R, Aguirre N et al (2002) High altitude tropical secondary forests: a competitive carbon sink? For Ecol Manag 163:9–25.  https://doi.org/10.1016/S0378-1127(01)00535-7 CrossRefGoogle Scholar
  38. Flamenco-Sandoval A, Ramos MM, Masera OR (2007) Assessing implications of land-use and land-cover change dynamics for conservation of a highly diverse tropical rain forest. Biol Conserv 138:131–145CrossRefGoogle Scholar
  39. Fonseca W, Benayas JMR, Alice FE (2011) Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag 262:1400–1408CrossRefGoogle Scholar
  40. Galindo-Jaimes L, González-Espinosa M, Quintana-Ascencio P, García-Barrios L (2002) Tree composition and structure in disturbed stands with varying dominance by Pinus spp. in the highlands of Chiapas, México. Plant Ecol 162:259–272.  https://doi.org/10.1023/A:1020309004233 CrossRefGoogle Scholar
  41. García-Barrios L, Galván-Miyoshi YM, Valsieso-Pérez IA et al (2009) Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59:863–873CrossRefGoogle Scholar
  42. Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023CrossRefGoogle Scholar
  43. González Espinosa M, Ramírez Marcial N, Camacho Cruz A et al (2007) Restauración de bosques en territorios indígenas de Chiapas: modelos ecológicos y estrategias de acción. Bol Soc Botánica México 80:11–23Google Scholar
  44. Guan J, Zhou H, Deng L et al (2015) Forest biomass carbon storage from multiple inventories over the past 30 years in Gansu Province, China: implications from the age structure of major forest types. J For Res 26:887–896.  https://doi.org/10.1007/s11676-015-0116-y CrossRefGoogle Scholar
  45. Gunn JS, Ducey MJ, Whitman AA (2014) Late-successional and old-growth forest carbon temporal dynamics in the Northern Forest (Northeastern USA). For Ecol Manag 312:40–46.  https://doi.org/10.1016/j.foreco.2013.10.023 CrossRefGoogle Scholar
  46. Gutiérrez Vázquez BN, Gómez Cárdenas M, Valencia Manzo S et al (2010) Variación de la densidad de la madera en poblaciones naturales de Pinus oocarpa Schiede ex Schltdl. del estado de Chiapas, México. Rev Fitotec Mex 33:75–78Google Scholar
  47. Henry M, Cifuentes Jara M, Réjou-Méchain M et al (2015) Recommendations for the use of tree models to estimate national forest biomass and assess their uncertainty. Ann For Sci 72:769–777.  https://doi.org/10.1007/s13595-015-0465-x CrossRefGoogle Scholar
  48. Hernández-Stefanoni JL, Dupuy JM, Johnson KD et al (2014) Improving species diversity and biomass estimates of tropical dry forests using airborne LiDAR. Remote Sens 6:4741–4763CrossRefGoogle Scholar
  49. Houghton R (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Clim Syst 4:597–603.  https://doi.org/10.1016/j.cosust.2012.06.006 Google Scholar
  50. Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892–1907Google Scholar
  51. INEGI (2013) Uso de suelo y vegetación: Serie V. In: Inst. Nac. Estad. Geogr. INGI Mex. https://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/. Accessed 21 Mar 2018
  52. Kauffman JB, Steele MD, Cummings DL, Jaramillo VJ (2003) Biomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest. For Ecol Manag 176:1–12CrossRefGoogle Scholar
  53. Köhl M, Lasco R, Cifuentes M et al (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Chang Glob For Resour 352:21–34.  https://doi.org/10.1016/j.foreco.2015.05.036 Google Scholar
  54. Kurz WA, Stinson G, Rampley GJ et al (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci 105:1551–1555CrossRefGoogle Scholar
  55. Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  56. Liu YY, Van Dijk AI, De Jeu RA et al (2015) Recent reversal in loss of global terrestrial biomass. Nat Clim Change 5:470–474CrossRefGoogle Scholar
  57. Luyssaert S, Schulze E-D, Börner A et al (2008) Old-growth forests as global carbon sinks. Nature 455:213–215CrossRefGoogle Scholar
  58. Martínez-Meléndez J, Pérez-Farrera MÁ, Farrera-Sarmiento O (2008) Inventario florístico del cerro el Cebú y zonas adyacentes en la Reserva de la Biosfera El Triunfo (polígono V), Chiapas, México. Bol Soc Botánica México 82:21–40Google Scholar
  59. Martínez-Sánchez JL, Tigar BJ, Cámara L, Castillo O (2015) Relationship between structural diversity and carbon stocks in humid and sub-humid tropical forest of Mexico. Ecoscience 22:125–131CrossRefGoogle Scholar
  60. Mora F, Jaramillo VJ, Bhaskar R et al (2017) Carbon accumulation in neotropical dry secondary forests: the roles of forest age and tree dominance and diversity. Ecosystems.  https://doi.org/10.1007/s10021-017-0168-2 Google Scholar
  61. Myneni RB, Dong J, Tucker CJ et al (2001) A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci 98:14784–14789.  https://doi.org/10.1073/pnas.261555198 CrossRefGoogle Scholar
  62. Nabuurs G-J, Lindner M, Verkerk PJ et al (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Change 3:792–796CrossRefGoogle Scholar
  63. Ordóñez JAB, de Jong BH, García-Oliva F et al (2008) Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For Ecol Manag 255:2074–2084CrossRefGoogle Scholar
  64. Ordóñez Díaz JAB, Galicia Naranjo A, Venegas Mancera NJ et al (2015) Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera Bosques 21:77–216Google Scholar
  65. Orihuela-Belmonte DE, De Jong BHJ, Mendoza-Vega J et al (2013) Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric Ecosyst Environ 171:72–84CrossRefGoogle Scholar
  66. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefGoogle Scholar
  67. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291CrossRefGoogle Scholar
  68. Phalan B, Green RE, Dicks LV et al (2016) How can higher-yield farming help to spare nature? Science 351:450–451CrossRefGoogle Scholar
  69. Pimienta de la Torre DJ, Domínguez Cabrera G, Aguirre Caldreón Ó et al (2007) Estimación de biomasa y contenido de carbono de Pinus cooperi Blanco, en Pueblo Nuevo, Durango. Madera Bosques 13:35–46CrossRefGoogle Scholar
  70. Ponce-Reyes R, Reynoso-Rosales V-H, Watson JE et al (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change 2:448–452CrossRefGoogle Scholar
  71. Poorter L, Bongers F, Aide TM et al (2016) Biomass resilience of Neotropical secondary forests. Nature 530:211–214CrossRefGoogle Scholar
  72. Ramírez-Marcial N (2003) Survival and growth of tree seedlings in anthropogenically disturbed Mexican montane rain forests. J Veg Sci 14:881–890CrossRefGoogle Scholar
  73. Raymond CL, Healey S, Peduzzi A, Patterson P (2015) Representative regional models of post-disturbance forest carbon accumulation: integrating inventory data and a growth and yield model. For Ecol Manag 336:21–34.  https://doi.org/10.1016/j.foreco.2014.09.038 CrossRefGoogle Scholar
  74. Reich PB (2011) Biogeochemistry: taking stock of forest carbon. Nat Clim Change 1:346–347CrossRefGoogle Scholar
  75. Reyes G, Brown S, Chapman J, Lugo AE (1992) Wood densities of tropical tree species. Gen Tech Rep -88, U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, p 15Google Scholar
  76. Rodríguez-Laguna R, Jiménez-Pérez J, Aguirre-Calderón OA et al (2009) Estimación de carbono almacenado en el bosque de pino-encino en la Reserva de la Biósfera el Cielo, Tamaulipas, México. Ra Ximhai Rev Soc Cult Desarro Sustentable 5:317–327Google Scholar
  77. Rodríguez-Larramendi LA, Guevara-Hernández F, Reyes-Muro L et al (2016) Estimación de biomasa y carbono almacenado en bosques comunitarios de la región Frailesca de Chiapas, México. Rev Mex Cienc For 7:77–94Google Scholar
  78. Rojas-García F, De Jong BH, Martínez-Zurimendí P, Paz-Pellat F (2015) Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Ann For Sci 72:835–864CrossRefGoogle Scholar
  79. Schroth G, Laderach P, Dempewolf J et al (2009) Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig Adapt Strateg Glob Change 14:605–625CrossRefGoogle Scholar
  80. Silver W, Ostertag R, Lugo A (2000) The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol 8:394–407CrossRefGoogle Scholar
  81. Sitch S, Friedlingstein P, Gruber N et al (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12:653–679CrossRefGoogle Scholar
  82. Stephenson NL, Das A, Condit R et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93CrossRefGoogle Scholar
  83. Throop H, Archer S, Monger HC, Waltman S (2012) When bulk density methods matter: implications for estimating soil organic carbon pools in rocky soils. J Arid Environ 77:66–71CrossRefGoogle Scholar
  84. Toledo-Aceves T, Meave JA, González-Espinosa M, Ramírez-Marcial N (2011) Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J Environ Manag 92:974–981CrossRefGoogle Scholar
  85. Urquiza-Haas T, Dolman PM, Peres CA (2007) Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. For Ecol Manag 247:80–90CrossRefGoogle Scholar
  86. Van Wagner C (1982) Practical aspects of the line intersect method. Canadian Forest Service, Petawawa National Forestry Institute, Chalk RiverGoogle Scholar
  87. Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Change Biol 14:109–124Google Scholar
  88. Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ et al (2017) Allometric equations for estimation of biomass and carbon stocks in temperate forests of north-Western Mexico. Forests 8:269–289.  https://doi.org/10.3390/f8080269 CrossRefGoogle Scholar
  89. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  90. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. In: Dryad digital repository. Dryad, Durham. https://doi.org/10.5061/dryad.234 Google Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  1. 1.CONACYT-UNACH, Facultad de Ciencias AgronómicasUniversidad Autónoma de ChiapasVillafloresMexico
  2. 2.Facultad de Ciencias AgronómicasUniversidad Autónoma de ChiapasVillafloresMexico

Personalised recommendations