Molecular cloning, characterization, and antioxidant function of catalase in Lymantria dispar asiatic (Lepidoptera: Lymantriidae) under avermectin stress

  • Jianyong Zeng
  • Bowen Zhang
  • Thi Minh Dien Vuong
  • Tingting Zhang
  • Jing Yang
  • Guocai ZhangEmail author
Original Paper


The critical antioxidant catalase (CAT) breaks down hydrogen peroxide induced by environmental stresses. Here we cloned full length catalase cDNA from Lymantria dispar asiatic (LdCAT). Bioinformatic analyses showed that open reading frames of LdCAT contains 1524 bp, encoding 507 amino acids with molecular weight of 126.99 kDa, theoretical pI of 5.00, aliphatic index of 29.92, grand average of hydropathicity of 0.764, and instability index (II) of 46.56. Protein BLAST and multiple sequence alignment indicated that LdCAT had high identity with CAT from other insects, especially lepidopterans. In a phylogenetic analysis, LdCAT was most similar to CAT from Spodoptera litura and S. exigua. Quantitative real-time polymerase chain reaction showed that LdCAT transcripts in all instar larvae and the five tissues tested, verifying the ubiquity of LdCAT in L. disapr. Moreover, LdCAT of third instar larvae was significantly upregulated after they fed on avermectin at sublethal and LC10 doses. The highest relative transcript levels were found 2 h after an avermectin spray at LC90, and in the cuticula, rather than heads, fat bodies, malpighian tubes, and midguts after a spray avermectin at a sublethal concentration. The expression level of LdCAT under pesticide stresses here suggested that CAT is an important antioxidant enzyme of L. disapr defensing against pesticide stress and may be a good target for controlling this pest.


Lymantria dispar asiatic Gypsy moth Catalase Molecular cloning Relative expression level Pesticide stress Instar 


Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. Bartos M, Falkinham OJIII, Pavlik I (2012) Mycobacterial catalases, peroxidases, and superoxide dismutases and their effects on virulence and isoniazid-susceptibility in mycobacteria–a review. Veterinární Medicína 49:161–170CrossRefGoogle Scholar
  2. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208CrossRefGoogle Scholar
  3. Chen L, Diao J, Zhang W, Zhang L, Wang Z, Li Y, Deng Y, Zhou Z (2019) Effects of beta-cypermethrin and myclobutanil on some enzymes and changes of biomarkers between internal tissues and saliva in reptiles (Eremias argus). Chemosphere 216:69–74CrossRefGoogle Scholar
  4. El-Gendy K, Radwan M, Gad A, Khamis A, Eshra E (2019) Use of multiple endpoints to investigate the ecotoxicological effects of abamectin and thiamethoxam on Theba pisana snails. Ecotox Environ Safe 167:242–249CrossRefGoogle Scholar
  5. Fang S, Zhang Y, You X, Sun P, Qiu J, Kong F (2018) Lethal toxicity and sublethal metabolic interference effects of sulfoxaflor on the earthworm (Eisenia fetida). J Agr Food Chem 66:11902–11908CrossRefGoogle Scholar
  6. Fateh R, Zaini F, Kordbacheh P, Falahati M, Rezaie S, Daie Ghazvini R, Borhani N, Safara M, Fattahi A, Kanani A, Farahyar S, Bolhassani M, Heidari M (2015) Identification and sequencing of Candida krusei aconitate hydratase gene using rapid amplification of cDNA ends method and phylogenetic analysis. Jundishapur J Microb 8:1–11CrossRefGoogle Scholar
  7. Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem 29:187–197CrossRefGoogle Scholar
  8. Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant, Cell Environ 39:951–964CrossRefGoogle Scholar
  9. Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474:877–883CrossRefGoogle Scholar
  10. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880CrossRefGoogle Scholar
  11. Gaetani G, Ferraris A, Rolfo M, Mangerini R, Arena J, Kirkman H (1994) Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 84:1595–1599Google Scholar
  12. Iummato MM, Sabatini SE, Cacciatore LC, Cochón AC, Cataldo D, Mdcr DM, Juárez ÁB (2018) Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Ecotox Environ Safe 163:69–75CrossRefGoogle Scholar
  13. Jena K, Kar PK, Kausar Z, Babu CS (2013) Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. J Therm Biol 38:199–204CrossRefGoogle Scholar
  14. Kang Z, Liu F, Pang R, Tian H, Liu T (2018) Effect of sublethal doses of imidacloprid on the biological performance of aphid endoparasitoid Aphidius gifuensis (Hymenoptera: Aphidiidae) and influence on its related gene expression. Front Physiol 9:1–15CrossRefGoogle Scholar
  15. Li G, Fan A, Peng G, Keyhani NO, Xin J, Cao Y, Xia Y (2017) A bifunctional catalase-peroxidase, MakatG1, contributes to virulence of Metarhizium acridum by overcoming oxidative stress on the host insect cuticle. Environ Microbiol 19:4365–4378CrossRefGoogle Scholar
  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, California) 25:402–408CrossRefGoogle Scholar
  17. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666CrossRefGoogle Scholar
  18. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:200–203CrossRefGoogle Scholar
  19. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 192:1–15CrossRefGoogle Scholar
  20. Mcgillivray P, Ault R, Pawashe M, Kitchen R, Balasubramanian S, Gerstein M (2018) A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res 46:3326–3338CrossRefGoogle Scholar
  21. Mermans C, Dermauw W, Geibel S, Van LT (2017) A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. Pest Manag Sci 73:2413–2418CrossRefGoogle Scholar
  22. Merzendorfer H (2006) Insect chitin synthases: a review. J Comp Physiol B 176:1–15CrossRefGoogle Scholar
  23. Qin J, Lu M, Zheng Y, Du Y (2016) Molecular cloning, characterization, and functional analysis of catalase in Frankliniella occidentalis (Thysanoptera: Thripidae). Ann Entomol Soc Am 110:212–220Google Scholar
  24. Rudneva II (1999) Antioxidant system of black sea animals in early development. Comp Biochem Physiol C 122:265–271Google Scholar
  25. Santamaría ME, Arnaiz A, Velasco-Arroyo B, Grbic V, Diaz I, Martinez M (2018) Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Sci Rep-Uk 8:1–13CrossRefGoogle Scholar
  26. Shen Y, Li D, Tian P, Shen K, Zhu J, Feng M, Wan C, Yang T, Chen L, Wen F (2015) The catalase C-262T gene polymorphism and cancer risk: a systematic review and meta-analysis. Medicine 94:1–8Google Scholar
  27. Siddique S, Syed Q, Saleem Y, Adnan A, Qureshi FA (2015) Toxicity of avermectin B1b to earthworm and cockroaches. J Anim Plant Sci 25:844–850Google Scholar
  28. Song Y, Chen M, Zhou J (2017) Effects of three pesticides on superoxide dismutase and glutathione-S-transferase activities and reproduction of Daphnia magna. Arch Environ Prot 43:80–86CrossRefGoogle Scholar
  29. Sun X, Song Q (2006) PKC-mediated USP phosphorylation is required for 20E-induced gene expression in the salivary glands of Drosophila melanogaster. Arch Insect Biochem Physiol 62:116–127CrossRefGoogle Scholar
  30. Sun L, Wang Z, Zou C, Cao C (2014) Transcription profiling of 12 Asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides. Arch Insect Biochem 85:181–194CrossRefGoogle Scholar
  31. Tang Y, Wen M, Lian B, Cheng J, Wang K, Zhou B (2014) Detection, cloning, and sequencing of the enterotoxin gene of Clostridium perfringens type C isolated from goat. Turk J Vet Anim 36:153–158Google Scholar
  32. Tian X, Yang W, Wang D, Zhao Y, Yao R, Ma L, Ge C, Li X, Huang Z, He L (2018) Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram. Chemosphere 210:1006–1012CrossRefGoogle Scholar
  33. Vieira HLA, Pereira ACP, Carrondo MJT, Alves PM (2006) Catalase effect on cell death for the improvement of recombinant protein production in baculovirus-insect cell system. Bioproc Biosyst Eng 29:409–414CrossRefGoogle Scholar
  34. Waltari E, Jia M, Jiang CS, Lu H, Huang J, Fernandez C, Finzi A, Kaufmann DE, Markowitz M, Tsuji M, Wu X (2018) 5′ rapid amplification of cDNA ends and illumina MiSeq reveals B cell receptor features in healthy adults, adults with chronic HIV-1 infection, cord blood, and humanized mice. Front Immunol 9:1–22CrossRefGoogle Scholar
  35. Wan NF, Li X, Guo L, Ji XY, Zhang H, Chen YJ, Jiang JX (2018) Phytochemical variation mediates the susceptibility of insect herbivores to entomoviruses. J Appl Entomol 142:705–715CrossRefGoogle Scholar
  36. Wann KT (2010) The cellular actions of the avermectins. Phytother Res 1:143–150CrossRefGoogle Scholar
  37. Wei P, Che W, Wang J, Xiao D, Wang R, Luo C (2018) RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci. Pestic Biochem Physiol 145:1–7CrossRefGoogle Scholar
  38. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Method Mol Bio (Clifton, NJ) 112:531Google Scholar
  39. Xu ZF, Shi L, Peng JF, Shen GM, Wei P, Wu Q, He L (2016) Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Phys 129:75–82CrossRefGoogle Scholar
  40. Xu J, Lu M, Huang D, Du Y (2017) Molecular cloning, characterization, genomic structure and functional analysis of catalase in Chilo suppressalis. J Asia-Pac Entomol 20:331–336CrossRefGoogle Scholar
  41. Zeng J, Zhang F, Wu Y, Zhang T, Zhang G (2018) Synergistic mechanism of combined using insecisides abamectin plus triflumuron for control larvae of Lymantria dispar (Lepidoptera: Lymantriidae). Sci Sil Sin 54: (accept, waiting for publication)Google Scholar
  42. Zhang W, Chen W, Li Z, Ma L, Yu J, Wang H, Liu Z, Xu B (2018) Identification and characterization of three new cytochrome P450 genes and the Use of RNA interference to evaluate their roles in antioxidant defense in Apis cerana cerana fabricius. Front Physiol 9:1–16Google Scholar
  43. Zhao H, Sun X, Xue M, Zhang X, Li Q (2016a) Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: catalase may play a dominant role. PLoS ONE 11:1–17Google Scholar
  44. Zhao Y, Sun Q, Hu K, Ruan J, Yang X (2016b) Isolation, characterization, and tissue-specific expression of GABA A receptor α1 subunit gene of Carassius auratus gibelio after avermectin treatment. Fish Physiol Biochem 42:1–10CrossRefGoogle Scholar
  45. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30:892–897CrossRefGoogle Scholar
  46. Zou C, Lv C, Wang Y, Cao C, Zhang G (2017) Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar. Pestic Biochem Physiol 142:123–132CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Jianyong Zeng
    • 1
  • Bowen Zhang
    • 1
  • Thi Minh Dien Vuong
    • 1
    • 2
  • Tingting Zhang
    • 1
  • Jing Yang
    • 1
  • Guocai Zhang
    • 1
    Email author
  1. 1.School of Forest, Northeast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Vietnam Academy of Agricultural SciencesHanoiVietnam

Personalised recommendations