Improved germination of threatened medicinal Prunus africana for better domestication: effects of temperature, growth regulators and salts

  • Justine Germo Nzweundji
  • Koffi Konan
  • Leopold M. Nyochembeng
  • Nehemie Donfagsiteli Tchinda
  • Nicolas NiemenakEmail author
Original Paper


Prunus africana is an endangered medicinal species and has been classified as a priority for domestication in Cameroon. However, the seeds rapidly lose their viability during storage at room temperature after 2–3 months. This study aimed to improve seed germination of P. africana by germinating at different temperatures (4 °C, 28 °C) using different concentrations of growth stimulators (sodium nitrate and gibberellic acid) and different concentrations of salts. P. africana seeds had 91.7% germination at 4 °C after 1 month of storage. Growth regulators considerably influenced germination after 6 months and reached 66.0% with 10 mM gibberellic acid and 100% with 10 mM sodium nitrate. Approximately three shoots per seed were developed, an indication of polyembryony. Histochemical analyses revealed the presence of protein-like bodies close to the embryo axis and accumulations of starch after 7 days of germination. After 14 days, amyloplasts and dark protein bodies of various sizes were observed. The outcome of this study will contribute to improve the germination of P. africana for better domestication and conservation.


Conservation Germination Growth regulators Histochemical analyses Prunus africana Temperature 



This work was supported by The Rufford Small Grants Foundation to Niemenak Nicolas (RSG Ref. 70.05.09) and by the UNESCO l’Oreal Fellowship for Women in Science Program to Nzweundji Justine Germo. The Alexander von Humboldt Foundation is also acknowledged for material donation to Niemenak Nicolas.


  1. Amougou A, Betti JL, Ewusi NB, Mbarga N, Akagou ZHC, Fonkoua C, Nkouna AC (2010) Preliminary report on sustainable harvesting of Prunus africana (Rosaceae) in the North West region of Cameroon. National Forestry Development Agency (ANAFOR), CameroonGoogle Scholar
  2. Avana ML (2006) Domestication de Prunus africana (Hook. f.) Kalkam (Rosaceae): étude de la germination et du bouturage. Thèse Doctorat/Ph.D. en Biologie végétale, Université de Yaoundé I.Google Scholar
  3. Balotf S, Islam S, Kavoosi G, Kholdebarin B, Juhasz A, Ma WJ (2018) How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PloS One 13:190–269CrossRefGoogle Scholar
  4. Barbedo JC (2018) A new approach towards the so-called recalcitrant seeds. J Seed Sci 37:241–247Google Scholar
  5. Beentje HJ (1994) Kenyan trees, shrubs and lianas. National Museums of Kenya, NairobiGoogle Scholar
  6. Berjak P, Pammenter NW (2004) Recalcitrant seeds. In: Benech-Arnold RL, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Haworth Press, New York, pp 305–345Google Scholar
  7. Bewley JD, Black M (1994) Seeds. Physiology of development and germination. Plenum Press, New YorkGoogle Scholar
  8. Bodeker G, van‘tKlooster C, Weisbord E (2014) Prunus africana (Hook.f.) Kalkman: The overexploitation of a medicinal plant species and its legal context. J Altern Complement Med (New York, N.Y.) 20(11): 810−822.CrossRefGoogle Scholar
  9. Buckeridge MS, Tiné MAS, Santos HP, Lima DU (2000) Polissacarídeos de reserva de paredecelularemsementes: estrutura, metabolismo, funções e aspectosecológicos. Revista Brasileira de Fisiologia Vegetal 12:137–162Google Scholar
  10. Buckeridge MS, Aidar MPM, Santos HP, Tine MAS (2004) Acu´mulo de reservas. In: Ferreira AG, Borghetti F (eds) Germinação: do básicoaoaplicado. Artmed, Porto Alegre, pp 31–50Google Scholar
  11. Cunningham AB, Mbenkum FT (1993) Sustainability of harvesting Prunus africana bark in Cameroon: a medicinal plant in international trade. People and Plants working paper 2. UNESCO Press, ParisGoogle Scholar
  12. Dawson I, Were J, Lengkeek A (2000) Conservation of Prunus africana, an over-exploited African medicinal tree. For Genet Resour FAO 28:27–33Google Scholar
  13. Del Rio LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792CrossRefGoogle Scholar
  14. Greggains V, Finch-Savage WE, Quick WP, Atherton MN (2000) Putative desiccation tolerance mechanisms in orthodox and recalcitrant seeds of the genus Acer. Seed Sci Res 3:317–327CrossRefGoogle Scholar
  15. Hendry GAF, Finch-Savage WE, Thorpe PC, Atherkon NM, Buckland SH, Nilsson KA, Seel WE (1992) Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytol 122:273–299CrossRefGoogle Scholar
  16. Jamnadass RH, Dawson IK, Franzel S, Leakey RRB, Mithöfer D, Akinnifesi FK, Tchoundjeu Z (2011) Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems: a review. Int For Rev 13:338–354Google Scholar
  17. Jena AK, Vasisht K, Sharma N, Kaur R, Dhingra MS, Karan M (2016) Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species. J Ethnopharmacol 190:33–45CrossRefGoogle Scholar
  18. Jones RL, Macmillan J (1984) Gibberellins. In: Wilkins MB (ed) Advanced plant physiology. Pitman Publishing Limited, London, pp 21–52Google Scholar
  19. Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in citrus: accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol 110(2):599–609CrossRefGoogle Scholar
  20. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:1–4CrossRefGoogle Scholar
  21. Lamotte O, Coutois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1–4CrossRefGoogle Scholar
  22. Li ZG, Liu AQ, Wu HS, Tan LH, Long YZ, Gou YF, Sun SW, Sang LW (2010) Influence of temperature, light and plant growth regulators on germination of black pepper (Piper nigrum L.) seeds. Afr J Biotechnol 9:1354–1358CrossRefGoogle Scholar
  23. Lima RBS, Gonçalves JFC, Pando SC, Fernandes V, Santos ALW (2008) Primary metabolite mobilization during germination in rosewood (Anibaro saedora Ducke) seeds. Revista Árvore 32:19–25CrossRefGoogle Scholar
  24. Loch DS, Adkins SW, Heslehurst MR, Paterson MF, Bellairs SM (2004) Seed formation, development, and germination. In: Moser L, Burson B, Sollenberger L (eds) Warm season (C4) grasses. Agronomy Society of America, Inc., Omaha, pp 95–144Google Scholar
  25. McDonald MB (2004) Orthodox seed deterioration and its repair. In: Benech-Arnold RL, Sanchez RA (eds) Handbook of seed physiology: applications to agriculture. Food Products Press, New York, pp 273–304Google Scholar
  26. Mendes-Rodrigues C, Ranal MA, Oliveira PE (2011) Does polyembryony reduce seed germination and seedling development in Eriotheca pubescens (Malvaceae: Bombacoideae)? Am J Bot 98(10):1613–1622CrossRefGoogle Scholar
  27. Paixão MVS, Lopes JC, Schmildt ER, Sobreira AR, Meneghelli CR (2016) Avocado seedlings multiple stems production. Revista Brasileira de Fruticultura 38(2):e-221. CrossRefGoogle Scholar
  28. Pérez-Tornero O, Porras I (2008) Assessment of polyembryony in lemon: rescue and in vitro culture of immature embryos. Plant Cell Tissue Organ Cult 93(2):173–180CrossRefGoogle Scholar
  29. Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488CrossRefGoogle Scholar
  30. Pritchard SL, Charlton WL, Baker A, Grahan IA (2002) Germination and storage reserve mobilization are regulated independently in Arabdopsis. Plant J 31:639–647CrossRefGoogle Scholar
  31. Rehman S, Park IH (2000) Effect of scarification, gibberellic acid and chilling on the germination of golden rain-tree (Koelreuteria paniculata Laxm) seeds. Scientia Horticulturae 85:319–324CrossRefGoogle Scholar
  32. Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514Google Scholar
  33. Rosnah AHM, Dalorima T (2018) The effects of application of exogenous IAA and GA3 on the physiological activities and quality of Abelmoschus esculentus (Okra) var. Singa 979. Pertanika J Trop Agric Sci 41(1):209−224Google Scholar
  34. Sacandé M, Pritchard HW, Dudley AE (2004) Germination and storage characteristics of Prunus africana seeds. New For 27(3):1573–5095CrossRefGoogle Scholar
  35. Sivasubramaniam K, Selvarani K (2012) Viability and vigor of jamun (Syzygium cumini) seeds. Braz J Bot 35:4CrossRefGoogle Scholar
  36. Smith MT, Bejark P (1995) Deteriorative changes associated with the loss of viability of stored desiccation-tolerant and -sensitive seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 701–746Google Scholar
  37. Song J, Feng G, Tian CY, Zhang FS (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed germination stage. Ann Bot 96:399–405CrossRefGoogle Scholar
  38. Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007) Somatic embryogenesis in peach palm using the thin cell layer technique: induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 100:699–709CrossRefGoogle Scholar
  39. Stewart MK (2003) The african cherry (Prunus africana): from hoe-handles to the international herb market. Econ Bot 57:559–569CrossRefGoogle Scholar
  40. Sunderland TCH, Nkefor JP (1997) Trees as crops: the case of Prunus africana. Paper presented to the Tropical Agriculture Association Seminar "Tree as Crops". Saint Anne's College, OxfordGoogle Scholar
  41. Sunderland TCH, Tako CT (1999) The exploitation of Prunus africana on the island of Bioko, Equatorial Guinea. A report for the People and Plants Initiative, WWF-Germany and the IUCN/SSC Medicinal Plant Specialist GroupGoogle Scholar
  42. Szabó V, Mándy A, Magyar L, Hrotko K (2012) Germination of Prunus mahaleb L. seeds by gibberellic acid (GA) treatments in different seed age. Eur J Hortic Sci 77(5):199−203Google Scholar
  43. Tchoundjeu Z, Avana ML, Leakey RRB, Simons AJ, Asaah E, Duguma B, Bell JM (2002) Vegetative propagation of Prunus africana: effects of rooting medium, auxin concentrations and leaf area. Agrofor Syst 54:483–492CrossRefGoogle Scholar
  44. Tiedemann J, Neubohn B, Müntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12CrossRefGoogle Scholar
  45. Tobe K, Li XM, Omasa K (2000) Effects of sodium chloride on seed, germination and growth of two Chinese desert shrubs, Haloxylo nammodendron and H. persicum (Chenopodiaceae). Aust J Bot 48:455–460CrossRefGoogle Scholar
  46. Tonini PP, Lisboa CGS, Freschi L, Mercier H, Mazzoni-viveiros SC, Buckeridge MS (2006) Effect of abscisic acid on galactomannan degradation and endo-β-mannanase activity in seeds of Sesbania virgata (cav.) Pers. (Leguminosae). Tree 20:669–678CrossRefGoogle Scholar
  47. Vinceti B, Loo J, Gaisberger H, van Zonneveld MJ, Schueler S, Konrad H, Kadu CAC, Geburek T (2013) Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PloS One 8(3):e59987CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Justine Germo Nzweundji
    • 1
    • 2
  • Koffi Konan
    • 3
  • Leopold M. Nyochembeng
    • 4
  • Nehemie Donfagsiteli Tchinda
    • 2
  • Nicolas Niemenak
    • 1
    Email author
  1. 1.Department of Biological Science, Higher Teacher Training CollegeUniversity of Yaounde IYaoundéCameroon
  2. 2.Centre for Research on Medicinal Plants and Traditional MedicineInstitute of Medical Research and Medicinal Plants Studies (IMPM)YaoundéCameroon
  3. 3.IngateyGen LLCElizabeth CityUSA
  4. 4.Department of Natural Resources and Environmental SciencesAlabama A&M UniversityHunstvilleUSA

Personalised recommendations