Advertisement

Preliminary evaluation of liquefaction behavior of Eucalyptus grandis bark in glycerol

  • Xingyan Huang
  • Feng Li
  • Jiulong Xie
  • Cornelis F. De Hoop
  • Xiaopeng Peng
  • Jinqiu QiEmail author
  • Yuzhu Chen
  • Hui Xiao
Short Communication
  • 35 Downloads

Abstract

Eucalyptus grandis W. Hill ex Maiden bark was liquefied in glycerol with two types of catalysts. The chemical components of the residues with respect to temperature were examined to investigate the liquefaction behavior of bark. The results reveal that sulfuric acid was more efficient in converting bark into fragments in glycerol at low temperatures ≤ 433.15 K, equivalent to 160 °C than phosphoric acid. The liquefaction order of chemical components was lignin, hemicelluloses, and cellulose. The decrease of liquefaction yields at high temperatures (> 453.15 K) catalyzed by sulfuric acid was possibly a result of the recondensation of lignin and/or hemicelluloses.

Keywords

Chemical components Eucalyptus grandis bark Liquefaction Liquefied residue 

References

  1. ASTM D1102–84 (2001) Standard test method for ash solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  2. ASTM D1103–60 (1971) Standard test method for alpha-cellulose in wood. ASTM International, West ConshohockenGoogle Scholar
  3. ASTM D1104–56 (1971) Standard test method for holocellulose in wood. ASTM International, West ConshohockenGoogle Scholar
  4. ASTM D1106–96 (1996) Standard test method for acid-insoluble lignin in wood. ASTM International, West ConshohockenGoogle Scholar
  5. ASTM D1107–96 (1996) Standard test method for ethanol-toluene solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  6. ASTM D1109–84 (2001) Standard test method of 1% sodium hydroxide solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  7. ASTM D1110–96 (1996) Standard test for water solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  8. Chen HZ, Zhang YZ, Xie SP (2012) Selective liquefaction of wheat straw in phenol and its fractionation. Appl Biochem Biotechnol 167:250–258CrossRefGoogle Scholar
  9. Cruz-Lopes LP, Rodrigues L, Domingos I, Ferreira J, de Lemos LT, Esteves B (2016) Production of polyurethane foams from barks wastes. Int J Chem Mol Metall Eng 10(8):1056–1059Google Scholar
  10. D’Souza J, Yan N (2013) Producing bark-based polyols through liquefaction: effect of liquefaction temperature. ACS Sustain Chem Eng 1(5):534–540CrossRefGoogle Scholar
  11. D’Souza J, Wong SZ, Camargo R, Yan N (2016) Solvolytic liquefaction of bark: understanding the role of polyhydric alcohols and organic solvents on polyol characteristics. ACS Sustain Chem Eng 4(3):851–861CrossRefGoogle Scholar
  12. Fu YL, Mo YY, Qing GL, Zhao L, Rong YQ (2011) Liquefaction of Eucalyptus bark and resinification of liquefied products. J Zhejiang A F Univ 28(3):466–471 (in Chinese) Google Scholar
  13. Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose into levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRefGoogle Scholar
  14. Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 81:1378–1392CrossRefGoogle Scholar
  15. Guo XJ, Li XW, Zhang J, Gan C, Xue B (2005) Studies on variation of main chemical components of wood in pulpwood plantation of Eucalyptus grandis. J Sichuan Agric Univ 23(3):305–312 (in Chinese) Google Scholar
  16. Lee WJ, Liu CT (2003) Preparation of liquefied bark-based resol resin and its application to particle board. J Appl Polym Sci 87(11):1837–1841CrossRefGoogle Scholar
  17. Pan H, Shupe TF, Hse CY (2007) Characterization of liquefied wood residues from different liquefaction conditions. J Appl Polym Sci 105(6):3726–3739CrossRefGoogle Scholar
  18. Roslan R, Zakaria S, Chia CH, Boehm R, Laborie MP (2014) Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibers. Ind Crops Prod 62:119–124CrossRefGoogle Scholar
  19. Sankar G, Yan N (2014) Bio-based two component (2 K) polyurethane adhesive derived from liquefied infested Lodgepole pine barks. J Biobased Mater Bioenergy 8(4):457–464CrossRefGoogle Scholar
  20. Wang TP, Yin J, Zheng ZM (2012) Effects of chemical inhomogeneity of corn stalk on solvolysis liquefaction. Carbohydr Polym 87(4):2638–2641CrossRefGoogle Scholar
  21. Xiao WH, Niu WJ, Yi F, Liu X, Han LJ (2013) Influence of crop residue types on microwave-assisted liquefaction performance and products. Energy Fuels 27:3204–3208CrossRefGoogle Scholar
  22. Xie JL, Hse CY, Shupe TF, Qi JQ, Hui P (2014) Liquefaction behaviors of bamboo residues in glycerol-based solvent using microwave energy. J Appl Polym Sci 131:9.  https://doi.org/10.1002/app.40207 CrossRefGoogle Scholar
  23. Xie JL, Qi JQ, Hse CY, Shupe TF (2015a) Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures. J For Res 26:261–265CrossRefGoogle Scholar
  24. Xie JL, Zhai XL, Hse CY, Shupe TF, Pan H (2015b) Polyols from microwave liquefaction bagasse and its application to rigid polyurethane foam. Materials 8:8496–8509CrossRefGoogle Scholar
  25. Xie JL, Hse CY, Shupe TF, Pan H, Hu TX (2016) Extraction and characterization of holocellulose fibers by microwave-assisted selective liquefaction of bamboo. J Appl Polym Sci 133:18.  https://doi.org/10.1002/app.43394 CrossRefGoogle Scholar
  26. Xu JM, Xie XF, Wang JX, Jiang JC (2016) Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem 18:3124–3188CrossRefGoogle Scholar
  27. Yin CG (2012) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Biores Technol 120:273–284CrossRefGoogle Scholar
  28. Zhang HR, Pan H, Shi JS, Fu TZ, Liao B (2012) Investigation of liquefaction wood residues based on cellulose, hemicelluloses, and lignin. J Appl Polym Sci 123(2):850–856CrossRefGoogle Scholar
  29. Zhang HR, Yang HJ, Guo HJ, Huang C, Xiong L, Chen XD (2014) Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols. Appl Energy 113:1596–1600CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xingyan Huang
    • 1
    • 2
  • Feng Li
    • 1
  • Jiulong Xie
    • 1
    • 2
  • Cornelis F. De Hoop
    • 2
  • Xiaopeng Peng
    • 3
  • Jinqiu Qi
    • 1
    Email author
  • Yuzhu Chen
    • 1
  • Hui Xiao
    • 1
  1. 1.College of ForestrySichuan Agricultural UniversityChengduPeople’s Republic of China
  2. 2.Louisiana Forest Products Development Center, School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeUSA
  3. 3.State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingPeople’s Republic of China

Personalised recommendations