Advertisement

Journal of Forestry Research

, Volume 30, Issue 5, pp 1727–1734 | Cite as

Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl.)

  • Cristina Heredia-Acuña
  • Juan J. Almaraz-SuarezEmail author
  • Ramón Arteaga-Garibay
  • Ronald Ferrera-Cerrato
  • Deisy Y. Pineda-Mendoza
Original Paper

Abstract

In this study, 10 bacterial strains were isolated from the rhizosphere of coniferous trees on Mount Tláloc in Mexico. The strains were characterized by their capacity to produce auxins, solubilize phosphates and stimulate mycelial growth of the ectomycorrhizal fungus Suillus sp. All isolates were identified at the molecular level. Moreover, an experiment was established to evaluate the response of Pinus pseudostrobus seedlings to inoculation with the rhizobacteria strains. The isolated strains belonged to the species Cupriavidus basilensis, Rhodococcus qingshengii, R. erythropolis, Pseudomonas spp., P. gessardii, Stenotrophomonas rhizophila and Cohnella sp. All of the strains produced auxins; the best producer was R. erythropolis CPT9 (76.4 µg mL−1). P. gessardii CPT6 solubilized phosphate at a significant level (443 µg mL−1). The strain S. rhizophila CPT8 significantly increased the radial growth of the ectomycorrhizal fungus Suillus sp. by 18.8%. Five strains increased the dry mass of the shoots; R. qingshengii CPT4 and R. erythropolis CPT9 increased growth the most, by more than 20%. Inoculation with plant-growth-promoting rhizobacteria can be a very useful practice in a forest nursery to produce healthy, vigorous plants.

Keywords

Biofertilizers Forest species Rhizobacteria Indole acetic acid Phosphate solubilization 

References

  1. Ahangarar MA, Dar GH, Bhat ZA (2012) Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions. Ann For Res 55(2):217–227Google Scholar
  2. Anand R, Grayston S, Chanway C (2013) N2-Fixation and seedling growth promotion of lodgepole pine by endohytic Paenibacillus Polymyxa. Microb Ecol 66:369–374CrossRefPubMedGoogle Scholar
  3. Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD (2006) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541CrossRefPubMedGoogle Scholar
  4. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252CrossRefGoogle Scholar
  5. Barriuso J, Pereyra MT, García JL, Megías M, Manero FG, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus- Pinus sp. Microb Ecol 50:82–89CrossRefPubMedGoogle Scholar
  6. Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16:159–166CrossRefGoogle Scholar
  7. Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800CrossRefPubMedGoogle Scholar
  8. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383CrossRefPubMedGoogle Scholar
  9. Brunetta CFMJ, Cuoto AA, Goncalves MR, Gomes JM, Binoti DB, EdeP Fonseca (2007) Avaliação da especificidade de rizobactérias isoladas de diferentes espécies de Pinus sp. Rev Árvore 31(6):1027–1033CrossRefGoogle Scholar
  10. Brunetta CFMJ, Alfenas CA, Mafia GR, Gomes JM, Binoti DB, Fonseca NAN (2010) Isolamiento e seleςã de rizobactérias promotoras do crescimento de Pinus taeda. Rev Árvore 34(3):399–406CrossRefGoogle Scholar
  11. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72(2):1258CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cambrón-Sandoval VH, Sánchez-Vargas NM, Sáenz-Romero C, Vargas-Henández JJ, España-Boquera ML, Herrerías-Diego Y (2013) Genetic parameters for seedling growth in Pinus pseudostrobus families under different competitive environments. New For 44:219–232CrossRefGoogle Scholar
  13. Čejková A, Masák J, Jirku V, Veselý M, Pátek M, Nešvera J (2005) Potential of Rhodococcus erythopolis as a bioremediation organism. World J Microbiol Biotechnol 21:317–324CrossRefGoogle Scholar
  14. Chanway CP, Holl FB (1992) Influence of soil biota on Douglas fir Pseudotsuga menziesii seedling growth: the role of rhizosphere bacteria. Can J Bot 70:1025–1031CrossRefGoogle Scholar
  15. Cuevas-Guzmán R, Cisneros-Lepe EA, Jardel-Peláez EJ, Sánchez-Rodríguez EV, Guzmán-Hernández L, Núñez-López NM, Rodríguez-Guerrero C (2011) Análisis estructural y de diversidad de Abies de Jalisco, México. Rev Mex Biodiv 82:1219–1233CrossRefGoogle Scholar
  16. Cumming JR, Zawaski C, Desai S, Collart FR (2015) Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. J Soil Sci Plant Nutr 15(2):464–485Google Scholar
  17. de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54(6):807–816CrossRefGoogle Scholar
  18. Enebak SA, Wei G, Kloepper JW (1998) Effects of plant growth-Promoting rhizobacteria on loblolly and slash pine seedlings. For Sci 44(1):139–144Google Scholar
  19. Estrada de los Santos P, Martínez-Aguilar L, López-Lara IM, Caballero-Mellado J (2012) Cupriavidus alkaliphilus sp. nov. a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol 35(5):310–314CrossRefPubMedGoogle Scholar
  20. Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36CrossRefPubMedGoogle Scholar
  21. Fuentes-Ramírez LE, Cabellero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 143–172Google Scholar
  22. Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12(6):543–548PubMedGoogle Scholar
  23. García JAL, Domenech J, Santamaría C, Camacho M, Daza A, Mañero FJG (2004) Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ Exp Bot 52:239–251CrossRefGoogle Scholar
  24. Gogotov IN, Khodakov RS (2008) Surfactant production by the Rhodoccocus erythropolis SH-5 bacteria grown on various carbon sources. Appl Biochem Microbiol 44(2):186–191CrossRefGoogle Scholar
  25. Gómez-Romero M, Soto-Correa JC, Blanco-García JA, Sáenz-Romero C, Villegas J, Lindig-Cisneros R (2012) Estudio de especies de pino para restauración de sitios degradados. Agrociencia 46(8):795–807Google Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  27. Holguin G, Bashan Y, Puente E, Carrillo A, Bethlenfalvay G, Rojas A, De Bashan LG (2003) Promoción del crecimiento en plantas por bacterias de la rizosfera. Agric Tec Mex 29:201–211Google Scholar
  28. Hrynkiewicz K, Baum C, Leinweber P (2010) Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J Plant Nutr Soil Sci 173(5):747–756CrossRefGoogle Scholar
  29. Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of l-tryptophan and rice root exudates. J Plant Pathol 91(1):61–63Google Scholar
  30. Kataoka R, Futai K (2009) A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol Fertil Soils 45:315–320CrossRefGoogle Scholar
  31. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Thompson JD (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefGoogle Scholar
  32. Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afri J Biotechnol 3(1):1–7CrossRefGoogle Scholar
  33. Mitchell RG, Wingfield M, Hodge GR, Steenkamp ET, Coutinho TA (2012) Selection of Pinus spp. in South Africa for tolerance to infection by the pitch canker fungus. New For 43:473–489CrossRefGoogle Scholar
  34. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24(16):1757–1764CrossRefPubMedPubMedCentralGoogle Scholar
  35. Naito M, Kawamoto T, Fujino K, Kobayashi M, Maruhashi K, Tanaka A (2001) Long term repeated biodesulfuration by inmobilized Rhodoccocus erthropolis Ka2-5-1 cells. Appl Microbiol Biotechnol 55:374–378CrossRefPubMedGoogle Scholar
  36. Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R (2009) Responses of Pinus halapensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320:169–179CrossRefGoogle Scholar
  37. Park SD, Uh Y, Jang IH, Yoon KJ, Kim HM, Bae YJ (2011) Rhodococcus erythopolis septicaemia in a patient with acute lymphocytic leukaemia. J Med Microbiol 60:252–255CrossRefPubMedGoogle Scholar
  38. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51(4):403–415CrossRefGoogle Scholar
  39. Pii Y, Borruso L, Brusetti L, Crecchino C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48CrossRefPubMedGoogle Scholar
  40. Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751CrossRefGoogle Scholar
  41. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond 359:907–918CrossRefGoogle Scholar
  42. Probanza A, Garcia JL, Paomino MR, Ramos B, Mañero FG (2002) Pinus pinea L. seedlings growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT5106 and B. pumilus CECT5105). Appl Soil Ecol 20:75–84CrossRefGoogle Scholar
  43. Qian YC, Shi JY, Chen YX, Lou LP, Cui XY, Cao RK, Li PF, Tang J (2010) Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules 15(11):8518–8533CrossRefPubMedPubMedCentralGoogle Scholar
  44. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorous and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  45. Rincón A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693–1701CrossRefPubMedGoogle Scholar
  46. Rojas A, Holguin G, Glick BR, Bashan Y (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187CrossRefPubMedGoogle Scholar
  47. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25(1):39–67CrossRefPubMedGoogle Scholar
  48. SAS Institue Inc (1999) The SAS system for windows. Ver. 9.0 SAS Institute Inc., North Carolina (EUA) Google Scholar
  49. Sharma T, Rai N (2015) Isolation of Plant Hormone (Indole-3-Acetic Acid) Producing Rhizobacteria and Study on their Effects on Tomato (Lycopersicum esculentum) Seedling. Int J PharmaTech Res 7:099–107Google Scholar
  50. Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir-pine. Crop Prot 29:1142–1147CrossRefGoogle Scholar
  51. Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39(1):151–156CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  54. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefPubMedPubMedCentralGoogle Scholar
  55. White AK, Metcalf WW (2007) Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol 61:379–400CrossRefPubMedGoogle Scholar
  56. Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92(6):1095–1105CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wu XQ, Hou L, Sheng JM, Ren JH, Zheng L, Chen D, Ye JR (2012) Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol Fertil Soils 48(4):385–391CrossRefGoogle Scholar
  58. Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50CrossRefGoogle Scholar
  59. Zenni RD, Simberloff D (2013) Number of source populations as a potential driver of pineinvasions in Brazil. Biol Invasions 15:1623–1639CrossRefGoogle Scholar
  60. Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007) Extensive desulfuration of diesel by Rhodoccocus erythropolis. Biotechnol Lett 29:123–127CrossRefPubMedGoogle Scholar
  61. Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ (2014) An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLoS ONE 9(4):e93773CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhukov DV, Murygina VP, Kalyuzhnyi SV (2007) Kinetic of the degradation of aliphatichydrocarbons by the bacteria Rhodococcus rube y Rhodoccocus erythropolis. Appl Biochem Microbiol 43(6):587–592CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Heredia-Acuña
    • 1
  • Juan J. Almaraz-Suarez
    • 1
    Email author
  • Ramón Arteaga-Garibay
    • 2
  • Ronald Ferrera-Cerrato
    • 1
  • Deisy Y. Pineda-Mendoza
    • 1
  1. 1.Área de Microbiología, Postgrado de EdafologíaColegio de PostgraduadosMontecilloMexico
  2. 2.Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos GenéticosINIFAPTepatitlán de MorelosMexico

Personalised recommendations