Journal of Forestry Research

, Volume 30, Issue 5, pp 1603–1617 | Cite as

Comparison of temporal and spatial changes in three major tropical forests based on MODIS data

  • Siyang Yin
  • Wenjin Wu
  • Xinwu LiEmail author
Original Paper


Numerous studies have shown that intact tropical forests account for half of the total terrestrial sink for anthropogenic carbon dioxide. Here, we analyzed and compared changes in three main tropical forest regions from 2000 to 2014, based on time-series analysis and landscape metrics derived from moderate-resolution imaging spectroradiometer data. We examined spatial-pattern changes in percentage of tree cover and net primary production (NPP) for three tropical forest regions—Amazon basin, Congo basin, and Southeast Asia. The results show that: the Amazon basin region had the largest tropical forest area and total NPP and a better continuity of TC distribution; the Southeast Asia region exhibited a sharp decrease in NPP and had comparatively separate spatial patterns of both TC and NPP; and the Congo basin region exhibited a dramatic increase in NPP and had better aggregation of forest NPP distribution. Results also show that aggregative patterns likely correlate with high NPP values.


Tropical forests Global forest change Landscape analysis 



The MODIS LCT and NPP products were retrieved from the online Data Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, We would like to thank Editage [] for English-language editing.


  1. Anamariag T, Britaldos SF, Simoner F, Jeanpaul M (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. For Ecol Manag 257(4):1219–1230CrossRefGoogle Scholar
  2. Anaya JA, Chuvieco E, Palacios-Orueta A (2009) Aboveground biomass assessment in Colombia: a remote sensing approach. For Ecol Manag 257(4):1237–1246CrossRefGoogle Scholar
  3. Aragao L, Poulter B, Barlow JB, Anderson LO, Malhi Y, Saatchi S, Phillips OL, Gloor E (2014) Environmental change and the carbon balance of Amazonian forests. Biol Rev 89(4):913–931CrossRefPubMedGoogle Scholar
  4. Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23(6):1386–1395CrossRefPubMedGoogle Scholar
  5. Balmford A, Green RE, Jenkins M (2003) Measuring the changing state of nature. Trends Ecol Evol 18(7):326–330CrossRefGoogle Scholar
  6. Başkent EZ, Kadioğullari AI (2007) Spatial and temporal dynamics of land use pattern in Turkey: a case study in İnegöl. Landsc Urban Plan 81(4):316–327CrossRefGoogle Scholar
  7. Benchimol M, Peres CA (2014) Predicting primate local extinctions within “real-world” forest fragments: a pan-neotropical analysis. Am J Primatol 76(3):289–302CrossRefPubMedGoogle Scholar
  8. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449CrossRefPubMedGoogle Scholar
  9. Booth BB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Lloyd J (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7(2):024002CrossRefGoogle Scholar
  10. Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJ, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141(7):1745–1757CrossRefGoogle Scholar
  11. Brovkin V, Boysen L, Raddatz T, Gayler V, Loew A, Claussen M (2013) Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J Adv Model Earth Syst 5(1):48–57CrossRefGoogle Scholar
  12. Bustamante MMC, Roitman I, Aide TM, Alencar A, Anderson LO, Aragao L, Asner GP, Barlow J, Berenguer E, Chambers J, Costa MH, Fanin T, Ferreira LG, Ferreira J, Keller M, Magnusson WE, Morales-Barquero L, Morton D, Ometto J, Palace M, Peres CA, Silverio D, Trumbore S, Vieira ICG (2016) Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob Change Biol 22(1):92–109CrossRefGoogle Scholar
  13. Carroll M, Townshend J, Hansen M, DiMiceli C, Sohlberg R, Wurster K (2010) MODIS vegetative cover conversion and vegetation continuous fields. In: Ramachandran B, Justice CO, Abrams MJ (eds) Land remote sensing and global environmental change. Springer, New York, pp 725–745CrossRefGoogle Scholar
  14. Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23(5):563–573CrossRefGoogle Scholar
  15. Chen LF, Gao YH, Liu QH, Yu T, Gu XF, Yang L, Tang Y, Zhang Y (2005) The MODIS-based NPP model and its validation. In: 2005 IEEE international geoscience and remote sensing symposium, South Korea. IEEE, pp 3028–3031Google Scholar
  16. Chow J, Doria G, Kramer R, Schneider T, Stoike J (2013) Tropical forests under a changing climate and innovations in tropical forest management. Trop Conserv Sci 6(3):315–324CrossRefGoogle Scholar
  17. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11(2):371–384CrossRefGoogle Scholar
  18. Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16(2):747–759CrossRefGoogle Scholar
  19. Clay E, Moreno-Sanchez R, Torres-Rojo J, Moreno-Sanchez F (2016) National assessment of the fragmentation levels and fragmentation-class transitions of the forests in Mexico for 2002, 2008 and 2013. Forests 7(3):48CrossRefGoogle Scholar
  20. Cleveland CC, Taylor P, Chadwick KD, Dahlin K, Doughty CE, Malhi Y, Smith WK, Sullivan BW, Wieder WR, Townsend AR (2015) A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production. Glob Biogeochem Cycles 29(5):626–644CrossRefGoogle Scholar
  21. Corlett RT (2011) Impacts of warming on tropical lowland rainforests. Trends Ecol Evol 26(11):606–613CrossRefPubMedGoogle Scholar
  22. Corlett RT (2016) The impacts of droughts in tropical forests. Trends Plant Sci 21(7):584–593CrossRefPubMedGoogle Scholar
  23. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494(7437):341–344CrossRefPubMedGoogle Scholar
  24. Crouzeilles R, Curran M (2016) Which landscape size best predicts the influence of forest cover on restoration success? A global meta-analysis on the scale of effect. J Appl Ecol 53(2):440–448CrossRefGoogle Scholar
  25. DiMiceli C, Carroll M, Sohlberg R, Huang C, Hansen M, Townshend J (2011) Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover. University of Maryland, College Park, MD, USA. Accessed 20 Sept 2016
  26. Ersahin S, Bilgili BC, Dikmen U, Ercanli I (2016) Net primary productivity of anatolian forests in relation to climate, 2000–2010. For Sci 62(6):698–709Google Scholar
  27. Feeley KJ, Wright SJ, Supardi MNN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10(6):461–469CrossRefPubMedGoogle Scholar
  28. Forman RT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  29. Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1(1):5–18CrossRefGoogle Scholar
  30. Freitas SR, Lignani LB, Cabral DC (2011) Influence of landscape features on forest maturity: the case of a fragmented landscape in the Serra Do Mar coastal forest in Brazil. Braz J Nat Conserv 9(9):194–199CrossRefGoogle Scholar
  31. Gergel SE (2007) New directions in landscape pattern analysis and linkages with remote sensing. In: Wulder MA, Franklin SE (eds) Understanding forest disturbance and spatial pattern: remote sensing and GIS approaches. Taylor and Francis, Boca RatonGoogle Scholar
  32. Grace J, Malhi Y, Higuchi N, Meir P (2001) Productivity of tropical rain forests. In: Roy J, Mooney HA, Saugier B (eds) Terrestrial global productivity. Elsevier, LondonGoogle Scholar
  33. Grainger A (2010) Uncertainty in the construction of global knowledge of tropical forests. Prog Phys Geogr 34(6):811–844CrossRefGoogle Scholar
  34. Hansen MC, Defries RS (2004) Detecting long-term global forest change using continuous fields of tree-cover maps from 8-km advanced very high resolution radiometer (AVHRR) data for the years 1982–99. Ecosystems 7(7):695–716CrossRefGoogle Scholar
  35. He LM, Chen JM, Pan YD, Birdsey R, Kattge J (2012) Relationships between net primary productivity and U.S. forest stand age in forests. Glob Biogeochem Cycles 26(3):GB3009CrossRefGoogle Scholar
  36. Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F (2011) Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26(3):355–370CrossRefGoogle Scholar
  37. Hessburg PF, Smith BG, Salter RB (1999) Detecting change in forest spatial patterns from reference conditions. Ecol Appl 9(4):1232–1252CrossRefGoogle Scholar
  38. Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30(9):1391–1403CrossRefGoogle Scholar
  39. Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6(4):268–273CrossRefGoogle Scholar
  40. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20CrossRefGoogle Scholar
  41. Kim DH, Sexton JO, Townshend JR (2015) Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys Res Lett 42(9):3495–3501CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kou W, Liang CX, Wei LL, Hernandez AJ, Yang XJ (2017) Phenology-based method for mapping tropical evergreen forests by integrating of MODIS and landsat imagery. Forests 8(2):34CrossRefGoogle Scholar
  43. Kupfer JA (2006) National assessments of forest fragmentation in the US. Glob Environ Change 16(1):73–82CrossRefGoogle Scholar
  44. Kupfer JA, Runkle JR (2003) Edge-mediated effects on stand dynamic processes in forest interiors: a coupled field and simulation approach. Oikos 101(1):135–146CrossRefGoogle Scholar
  45. Kwon Y, Larsen CPS (2013) An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA. Environ Monit Assess 185(9):7263–7277CrossRefPubMedGoogle Scholar
  46. Laurance WF, Laurance SG, Delamonica P (1998) Tropical forest fragmentation and greenhouse gas emissions. For Ecol Manag 110(1–3):173–180CrossRefGoogle Scholar
  47. Li HB, Wu JG (2004) Use and misuse of landscape indices. Landsc Ecol 19(4):389–399CrossRefGoogle Scholar
  48. Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17(8):745–759CrossRefGoogle Scholar
  49. Loveland TR, Belward AS (1997) The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int J Remote Sens 18(15):3289–3295CrossRefGoogle Scholar
  50. MacDicken K, Jonsson Ő, Piňa L, Maulo S, Adikari Y, Garzuglia M, Lindquist E, Reams G, D’Annunzio R (2015) The global forest resources assessment 2015: how are the world’s forests changing. Food and Agriculture Organization of the United Nations, RomeCrossRefGoogle Scholar
  51. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15(8):332–337CrossRefPubMedGoogle Scholar
  52. Mayaux P, Achard F, Malingreau JP (1998) Global tropical forest area measurements derived from coarse resolution satellite imagery: a comparison with other approaches. Environ Conserv 25(1):37–52CrossRefGoogle Scholar
  53. Mayaux P, Holmgren P, Achard F, Eva H, Stibig H, Branthomme A (2005) Tropical forest cover change in the 1990s and options for future monitoring. Philos Trans R Soc B Biol Sci 360(1454):373–384CrossRefGoogle Scholar
  54. McGarigal K (2014) FRAGSTATS help. Retrieved from Accessed 15 Nov 2016
  55. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Accessed 14 Nov 2016
  56. Meyfroidt P, Lambin EF (2011) Global forest transition: prospects for an end to deforestation. Ann Rev Environ Resour Soc Sci Electron Publ 36:343–371CrossRefGoogle Scholar
  57. Michaela W, Joannec W, Margarete A, Nicolee S, Nicholasc C (2009) Forest fragmentation, structure, and age characteristics as a legacy of forest management. For Ecol Manag 258(9):1938–1949CrossRefGoogle Scholar
  58. Millington AC, Velez-Liendo XM, Bradley AV (2003) Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J Photogramm Remote Sens 57(4):289–299CrossRefGoogle Scholar
  59. Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Del Bon Espírito-Santo F, Hansen M, Carroll M (2005) Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interact 9(8):1–22CrossRefGoogle Scholar
  60. Nagendra H (2002) Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl Geogr 22(2):175–186CrossRefGoogle Scholar
  61. Newbold T, Hudson LN, Phillips HRP, Hill SLL, Contu S, Lysenko I, Blandon A, Butchart SHM, Booth HL, Day J, De Palma A, Harrison MLK, Kirkpatrick L, Pynegar E, Robinson A, Simpson J, Mace GM, Scharlemann JPW, Purvis A (2014) A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc R Soc B Biol Sci 281(1792):20141371CrossRefGoogle Scholar
  62. Oliveras I, Malhi Y (2016) Many shades of green: the dynamic tropical forest–savannah transition zones. Philos Trans R Soc B Biol Sci 371(1703):15CrossRefGoogle Scholar
  63. Pan YD, Birdsey R, Hom J, McCullough K, Clark K (2006) Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecol Appl 16(1):125–132CrossRefPubMedGoogle Scholar
  64. Parresol BR (2011) Derivation of two well-behaved theoretical contagion indices and their sampling properties and application for assessing forest landscape diversity. Nat Resour Model 24(1):61–101CrossRefGoogle Scholar
  65. Peng DL, Zhang B, Wu CY, Huete AR, Gonsamo A, Lei LP, Ponce-Campos GE, Liu XJ, Wu YH (2017) Country-level net primary production distribution and response to drought and land cover change. Sci Total Environ 574:65–77CrossRefPubMedGoogle Scholar
  66. Petrosyan A, Karathanassi V (2011) Review article of landscape metrics based on remote sensing data. J Environ Sci Eng 5(11):1542–1560Google Scholar
  67. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núnez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282(5388):439–442CrossRefPubMedGoogle Scholar
  68. Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13(2):51CrossRefGoogle Scholar
  69. Potter C, Klooster S, Hiatt C, Genovese V, Castilla-Rubio JC (2011) Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environ Res Lett 6(3):034024CrossRefGoogle Scholar
  70. Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Change 115(2):365–378CrossRefGoogle Scholar
  71. Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Model 222(12):1986–1997CrossRefGoogle Scholar
  72. Rafique R, Zhao F, de Jong R, Zeng N, Asrar GR (2016) Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: a model-data comparison. Remote Sens 8(3):177CrossRefGoogle Scholar
  73. Ramachandran B, Justice CO, Abrams MJ (eds) (2010) Land remote sensing and global environmental change: NASA’s earth observing system and the science of ASTER and MODIS. Springer, New YorkGoogle Scholar
  74. Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P (2010) Estimating the risk of Amazonian forest dieback. New Phytol 187(3):694–706CrossRefPubMedGoogle Scholar
  75. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32CrossRefGoogle Scholar
  76. Schmidt M, Jochheim H, Kersebaum KC, Lischeid G, Nendel C (2017) Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—a review. Agric For Meteorol 232:659–671CrossRefGoogle Scholar
  77. Schulz C, Koch R, Cierjacks A, Kleinschmit B (2017) Land change and loss of landscape diversity at the Caatinga phytogeographical domain—analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ 136:54–74CrossRefGoogle Scholar
  78. Sexton JO, Noojipady P, Song X, Feng M, Song DX, Kim DH, Anand A, Huang C, Channan S, Pimm SL, Townshend JR (2015) Conservation policy and the measurement of forests. Nat Clim Change 6:192–196CrossRefGoogle Scholar
  79. Sfair JC, Arroyo-Rodriguez V, Santos BA, Tabarelli M (2016) Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol Appl 26(6):1816–1826CrossRefPubMedGoogle Scholar
  80. Shen Y, Yu SX, Lian JY, Shen H, Cao HL, Lu HP, Ye WH (2016) Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci Rep 6:25304CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sloan S, Sayer JA (2015) Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manag 352:134–145CrossRefGoogle Scholar
  82. Spracklen BD, Kalamandeen M, Galbraith D, Gloor E, Spracklen DV (2015) A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10(12):e0143886CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sterck F, Anten NPR, Schieving F, Zuidema PA (2016) Trait acclimation mitigates mortality risks of tropical canopy trees under global warming. Front Plant Sci 7:607CrossRefPubMedPubMedCentralGoogle Scholar
  84. Toivonen JM, Kessler M, Ruokolainen K (2011) Accessibility predicts structural variation of Andean Polylepis forests. Biodivers Conserv 20(8):1789–1802CrossRefGoogle Scholar
  85. Tum M, Zeidler JN, Gunther KP, Esch T (2016) Global NPP and straw bioenergy trends for 2000–2014. Biomass Bioenerg 90:230–236CrossRefGoogle Scholar
  86. Tyukavina A, Baccini A, Hansen MC, Potapov PV, Stehman SV, Houghton RA, Krylov AM, Turubanova S, Goetz SJ (2015) Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ Res Lett 10(7):74002CrossRefGoogle Scholar
  87. van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2(11):737–738CrossRefGoogle Scholar
  88. Wheeler CE, Omeja PA, Chapman CA, Glipin M, Tumwesigye C, Lewis SL (2016) Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For Ecol Manag 373:44–55CrossRefGoogle Scholar
  89. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24(4):803–815CrossRefPubMedGoogle Scholar
  90. Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS (2002) Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 83(1–2):31–49CrossRefGoogle Scholar
  91. Wu JG, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365CrossRefGoogle Scholar
  92. Wulder MA, White JC, Andrew ME, Seitz NE, Coops NC (2009) Forest fragmentation, structure, and age characteristics as a legacy of forest management. For Ecol Manag 258(9):1938–1949CrossRefGoogle Scholar
  93. Wulder MA, White JC, Han T, Coops NC, Cardille JA, Holland T, Grills D (2011) Monitoring Canada’s forests. Part 2: national forest fragmentation and pattern. Can J Remote Sens 34(6):563–584CrossRefGoogle Scholar
  94. Xiong XX, Angal A, Sun JQ, Choi TY, Johnson E (2014) On-orbit performance of MODIS solar diffuser stability monitor. J Appl Remote Sens 8(1):183514Google Scholar
  95. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhao M, Running SW (2011) Response to comments on Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 333(6046):1093–1093CrossRefGoogle Scholar
  97. Zhao WQ, Zhao X, Tang BJ, Wu DH, Wei H (2015) Solar radiation contributed to the 2005 and 2010 Amazon droughts. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), Italy. IEEE, pp 1964–1967Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Key Laboratory of Earth ObservationHainanPeople’s Republic of China

Personalised recommendations