Advertisement

Journal of Forestry Research

, Volume 30, Issue 1, pp 65–71 | Cite as

Rooting of Pinus radiata somatic embryos: factors involved in the success of the process

  • I. A. Montalbán
  • P. MoncaleánEmail author
Original Paper
  • 84 Downloads

Abstract

In vitro conditions of the culture media, plant growth regulators and culture containers may cause anatomical and physiological changes that have negative effects on rooting and ex vitro acclimatization of somatic plantlets. The control of these factors could contribute to the improvement of somatic embryogenesis systems in conifers, especially in pines. The influence of macronutrient concentrations, explant type and culture containers in Pinus radiata D. Don in vitro somatic embryo rooting were analyzed. The highest rooting percentage was observed using half-strength macronutrient concentrations, complete micronutrients and vitamins of Quoirin and Lepoivre medium. Although the use of glass culture vessels was the best to increase the efficiency of the somatic embryogenesis process in terms of rooting, the use of ventilated containers resulted in a significant increase in the percentage of plants able to be planted in the field.

Keywords

Acclimatization Auxins Containers Pinus radiata Somatic embryogenesis 

References

  1. Aitken-Christie J, Singh AP, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Publishing Corporation, New York, pp 413–432CrossRefGoogle Scholar
  2. Alonso P, Moncaleán P, Centeno ML, Fernández B, Rodríguez A, Ordás R (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63(8):879–885CrossRefGoogle Scholar
  3. Arigita L, Canal MJ, Tamés RS, González A (2010) CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson). In Vitro Cell Dev Biol Plant 46(3):312–322CrossRefGoogle Scholar
  4. Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24(5):372–383CrossRefGoogle Scholar
  5. Barrales-López A, Robledo-Paz A, Trejo C, Espitia-Rangel E, Rodríguez-De la O JL (2015) Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. plantlets. In Vitro Cell Dev Biol Plant 51(3):274–283CrossRefGoogle Scholar
  6. Bonga JM (2017) Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees Struct Funct 31(3):780–789CrossRefGoogle Scholar
  7. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell, Tissue Organ Cult 100(3):241–254CrossRefGoogle Scholar
  8. Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell, Tissue Organ Cult 98(2):165–178CrossRefGoogle Scholar
  9. Côrrea LR, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol 29(6):315–324CrossRefGoogle Scholar
  10. De Diego N, Montalbán IA, Fernández de Larrinoa E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38(10):2607–2615CrossRefGoogle Scholar
  11. De Klerk GJ, Mrinova S, Rouf S, ter Brugge J (1997) Salicylic acid affects rooting of apple microcuttings by enhancement of oxidation of auxin. Acta Hort 447:247–248CrossRefGoogle Scholar
  12. Duhoux E, Davies D (1985) Shoot production from cotiledonary buds of Acacia albida and influence of sucrose on rhizogenesis. J Plant Physiol 121(2):175–180CrossRefGoogle Scholar
  13. Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18(9):743–748CrossRefGoogle Scholar
  14. George EF (1996) Plant propagation by tissue culture, Part II: in Practice. Exegetics Ltd., Edington, p 1361Google Scholar
  15. Hargreaves CL, Grace LJ, van der Maas SA, Menzies MI, Kumar S, Holden DG, Foggo MN, Low CB, Dibley MJ (2005) Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J For Res 35(11):2629–2641CrossRefGoogle Scholar
  16. Kodja H, Govinden-Soulange A, Gurib-Fakim I, Robene-Soustrade L, Humeau L, Figier J (1998) Micropropagation of Psiadia arguta through cotyledonary axillary bud culture. Plant Growth Regul 25(2):75–80CrossRefGoogle Scholar
  17. Krueger S, Robacker C, Simonton W (1991) Culture of Amelanchier × grandiflora in a programmable micropropagation apparatus. Plant Cell, Tissue Organ Cult 27(2):219–226CrossRefGoogle Scholar
  18. Liao YK, Juan IP (2015) Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res 20(1):114–124CrossRefGoogle Scholar
  19. Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees Struct Funct 24(6):1061–1071CrossRefGoogle Scholar
  20. Montalbán IA, De Diego N, Moncaleán P (2011) Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequence ex vitro performance in Pinus radiata. Forestry 84(4):363–373CrossRefGoogle Scholar
  21. Montalbán IA, De Diego N, Moncaleán P (2012) Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol Plant 34(2):451–460CrossRefGoogle Scholar
  22. Montalbán IA, Setién-Olarra A, García-Mendiguren O, Moncaleán P (2013) Somatic embryogenesis in Pinus halepensis Mill.: an important ecological species from the Mediterranean forest. Trees Struct Funct 27(5):1339–1351CrossRefGoogle Scholar
  23. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry. Deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34(3):231–239CrossRefGoogle Scholar
  24. Pavlović S, Vinterhalter B, Mitić N, Adžić S, Pavlović N, Zdravković M, Vinterhalter D (2010) In vitro shoot regeneration from seedling explants in Brassica vegetables: red cabbage, broccoli, Savoy cabbage and cauliflower. Arch Biol Sci 62(2):337–345CrossRefGoogle Scholar
  25. Quoirin M, Lepoivre P (1977) Études des milieux adaptés aux cultures in vitro de Prunus. Acta Hort 78:437–442CrossRefGoogle Scholar
  26. Ragonezi C, Klimaszewska K, Castro MR, Lima M, de Oliveira P, Zavattieri MA (2010) Adventitious rooting of conifers: influence of physical and chemical factors. Trees Struct Funct 24(6):975–992CrossRefGoogle Scholar
  27. Sriskandarajah S, Skirvin RM, Abu-Qaoud H (1990) The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell, Tissue Organ Cult 21(2):185–189CrossRefGoogle Scholar
  28. Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci 59(5–6):657–661CrossRefGoogle Scholar
  29. Walter C, Smith DR, Connett MB, Grace L, White DWR (1994) A biolistic approach for the transfer and expression of a uidA reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep 14(2–3):69–74Google Scholar
  30. Wiesman Z, Lavee S (1995) Enhancement of IBA stimulatory effect on rooting of olive cultivar stem cuttings. Sci Hortic 62(3):189–198CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NEIKER-TECNALIA, Centro de ArkauteVitoria-GasteizSpain

Personalised recommendations