Advertisement

Journal of Forestry Research

, Volume 30, Issue 1, pp 129–141 | Cite as

Influence of mulching and tree shelters on 4-year survival and growth of zeen oak (Quercus canariensis) seedlings

  • Taher Mechergui
  • Marta Pardos
  • Douglass F. Jacobs
Original Paper
  • 97 Downloads

Abstract

We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak (Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types (Italian Stone Pine (Pinus pinea L.), Lentisk (Pistacia lentiscus L.), and a combination of Italian Stone Pine and Lentisk (organic mulches), gravel (inorganic mulch) and control), and three tree shelter types (non-vented and vented tree shelters, and control) were tested. An increase in the number of internodes occurred under the gravel mulch, while a reduction in survival was found for the lentisk mulch. Tree shelters had no effect on survival, but increased mean height growth and reduced mean diameter growth during the 4 years (excepting a non-significant effect for vented tree shelter at year four). Comparison of the annual shoots and growth units (GU) between sheltered and unsheltered plants according to year of formation revealed two growth phases. In first phase, shoots were totally or partially inside the shelters; mean length of annual shoots and GU were greater for sheltered plants. The second phase was characterized by shoots emerging from shelters; mean length of annual shoots and GU were similar for all plants, with or without tree shelters. Results suggest that the use of tree shelters, particularly vented shelters, could contribute to the improvement of the artificial regeneration of zeen oak. The use of mulching alone or in combination with tree shelters did not improve zeen oak performance in the field.

Keywords

Zeen oak Mulching Tree shelters Plantation Survival rate Growth 

Notes

Acknowledgements

This research received financial support from the laboratory of silvopastoral resources (Silvopastoral Institute—Tabarka). The authors would like to thank the Tunisian General Direction of Forests (DGF) and their staff in the district of Sejnane for their assistance in all phases of this research, including plant supply and plantation installation. Special thanks are given to Abdel Hamid Smeti and Rabeh Marii for facilitating planting.

References

  1. Albouchi A, Abbassi M (2000) Effet du paillage plastique noir sur la survie et la croissance de six espèces forestières plantées en brise-vent en région semi-aride. Annales de l’Institut National de Recherches en Génie Rural, Eaux et Forêts 4:40–61Google Scholar
  2. Applegate GB, Bragg AL (1989) Improved growth rates of red cedar (Toona australis (F. Muell.) Harms) seedlings in growtubes in North Queensland. Aust For 52:293–297Google Scholar
  3. Athy ER, Keiffer CH, Stevens MH (2006) Effects of mulch on seedlings and soil on a closed landfill. Restor Ecol 14:233–241CrossRefGoogle Scholar
  4. Balandier P, Guitton JL, Rapey H (1995) Amélioration des tubes abris protégeant les jeunes arbres contre les animaux. Ingénieries EAT 4:41–48Google Scholar
  5. Bergez JE, Dupraz C (2000) Effect of ventilation on growth of Prunus avium seedlings grown in tree shelters. Agric For Meteorol 104:199–214CrossRefGoogle Scholar
  6. Borland J (1990) Mulch: examining the facts and fallacies behind the uses and benefits of mulch. Am Nurseryman 172(4):132–143Google Scholar
  7. Burger DW, Suiha P, Harris R (1992) Tree shelter use in producing container-gorwn trees. HortScience 27(1):30–32Google Scholar
  8. Burger DW, Forister GW, Kiehl PA (1996) Height, caliper growth, and biomass response of ten shade tree species to tree shelters. J Arboric 22(4):161–166Google Scholar
  9. Burger DW, Forister GW, Gross R (1997) Short and long-term effects of tree shelters on the root and stem growth of ornamental trees. J Arboric 23(2):49–56Google Scholar
  10. Chaar H, Mechergui T, Khouaja A, Abid H (2008) Effects of tree shelters and polyethylene mulch sheets on survival and growth of cork oak (Quercus suber L.) seedlings planted in North-western Tunisia. For Ecol Manag 256:722–731CrossRefGoogle Scholar
  11. Costello LR, Peters A, Giusti GA (1996) An evaluation of tree shelter effects on plant survival and growth in a Mediterranean climate. J Arboric 22(1):1–9Google Scholar
  12. Davies RJ (1988a) Sheet mulching as an aid to broadleaved tree establishment. I. The effectiveness of various synthetic sheets compared. Forestry 61(2):89–105CrossRefGoogle Scholar
  13. Davies RJ (1988b) Sheet mulching as an aid to broadleaved tree establishment. II. Comparison of various sizes of black polyethylene mulch and herbicide treated spot. Forestry 61(2):107–123CrossRefGoogle Scholar
  14. Dupraz C (1997a) Les Protections de plants à effet de serre. Première partie: ce qu’en pensent les arbres. Revue Forestière Française XLIX 5:417–432CrossRefGoogle Scholar
  15. Dupraz C (1997b) Les protections de plants à effet de serre. Deuxième partie: amélioration de leur efficacité par aération optimisée et luminosité accrue. Revue Forestière Française XLIX 6:3–14Google Scholar
  16. Dupraz C, Bergez JE (1999) Carbon dioxide limitation of the photosynthesis of Prunus avium L. seedlings inside an unventilated treeshelter. For Ecol Manag 119:89–97CrossRefGoogle Scholar
  17. Dupraz C, Guitton JL, Rapey H, Bergez JE, De Montard FX. 1993. Broad-leaved tree plantations on pastures: the treeshelter issue. In: Proceedings of the 4th international symposium on windbreaks and agroforestry, Viborg, pp 106–111. http://prodinra.inra.fr/record/112275
  18. Duryea ML, English RJ, Hermansen LA (1999) A comparison of landscape mulches: chemical, allelopathic, and decomposition properties. J Arboric 25:88–97Google Scholar
  19. Fang SZ, Li HY, Xie BD (2008) Decomposition and nutrient release of four potential mulching materials for poplar plantations on upland sites. Agrofor Syst 7:27–35.  https://doi.org/10.1007/s10457-008-9155-0 CrossRefGoogle Scholar
  20. Gleason ML, Iles JK (1998) Mulch matters: the proper use of organic mulch offers numerous benefits for your woody landscape plants. Am Nurseryman 187:24–31Google Scholar
  21. Green DS, Kruger EL, Stanosz GR (2003) Effects of polyethylene mulch in a short-rotation, poplar plantation vary with weed-control strategies, site quality and clone. For Ecol Manag 173:251–260CrossRefGoogle Scholar
  22. Greenly KM, Rakow DA (1995) The effect of wood mulch type and depth on weed and tree growth and certain soil parameters. J Arboric 21(5):225–232Google Scholar
  23. Guitton JL. 1994. Essais de plantations agroforestières en Corse du sud. Revue Forestière Française, (Numéro special), pp 96–101. http://hdl.handle.net/2042/26621
  24. Harmer R (1990) Relation of shoot growth phases in seedling oak to development of the tap root, lateral roots and fine root tips. New Phytol 115:23–27CrossRefGoogle Scholar
  25. Hemery GE, Savill PS (2001) The use of tree shelters application of stumping in the establishment of walnut (Juglans regia). Forestry 74(5):479–489CrossRefGoogle Scholar
  26. Jacobs DF (2011) Reforestation of a salvage-logged high-elevation clearcut: engelmann spruce seedling response to tree shelters after 11 growing seasons. West J Appl For 26:53–56Google Scholar
  27. Jaffe MJ, Forbes S (1993) Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul 12:313–324.  https://doi.org/10.1007/BF00027213 CrossRefGoogle Scholar
  28. Kazarjan VO (1969) Le vieillissement des végétaux supérieurs. Editions NAVKA, Moscou, p 194Google Scholar
  29. Kerr G (1995) The use of treeshelters: 1992 survey. Forestry Commission Technical Paper 11. Forestry Commission Edinburgh, Edinburgh. https://www.forestry.gov.uk/PDF/FCTP011.pdf/$FILE/FCTP011.pdf
  30. Mariotti B, Maltoni A, Jacobs DF (2015) Tree shelters affect shoot and root system growth and structure in Quercus robur during regeneration establishment. Eur J For Res 134:641–652CrossRefGoogle Scholar
  31. Mayhead GJ, Boothman IR (1997) The effect of tree shelter height on the early growth of sessile oak (Quercus petraea (Matt.) Liebl.). Forestry 70(2):151–155CrossRefGoogle Scholar
  32. McCreary DD, Tecklin J (1997) Effects of seedling protectors and weed control on Blue Oak Growth and survival. USDA Forest Service General Technical Report PSW-GTR-160, pp 243–249. https://www.fs.fed.us/psw/publications/documents/psw_gtr160/psw_gtr160_04b_mccreary2.pdf
  33. McCreary D, Costello LR, Tecklin J, Jones K, Labadie D (2002) The influence of treeshelters and irrigation on shoot and root growth of three California Oak Species. USDA Forest Service General Technical Report PSW-GTR-184. https://www.fs.fed.us/psw/publications/documents/gtr-184/034_McCreary.pdf
  34. McDonald PM, Helgerson OT (1990) Mulches aid in regenerating California and Oregon forests: past, present and future. USDA Forest Service General Technical Report PSW-123, p 19. https://www.fs.fed.us/psw/publications/documents/psw_gtr123/psw_gtr123.pdf
  35. Mechergui T (2016) Régénération artificielle du chêne-liège (Quercus suber L.) et du chêne-zéen (Quercus canariensis Willd.): impacts du paillage et des abris-serres sur l’installation, la croissance et le développement architectural des plants. Tunisie: Thèse de doctorat, Faculté des Sciences de Bizerte, Tunisie, p 154Google Scholar
  36. Mechergui T, Pardos M, Hasnaoui B, Jacobs DF (2013) Development of cork oak (Quercus suber L.) seedlings in response to tree shelters and mulching in northwestern Tunisia. J For Res 24(2):193–204.  https://doi.org/10.1007/s11676-013-0345-x CrossRefGoogle Scholar
  37. Oelbermann M, Voroney RP, Schlönvoigt AM, Kass DCL (2004) Decomposition of Erythrina poeppigiana leaves in 3-, 9-, and 18-year-old alleycropping systems in Costa Rica. Agrofor Syst 63:27–32CrossRefGoogle Scholar
  38. Oliet JA, Jacobs DF (2007) Microclimatic conditions and plant morpho-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric For Meteorol 144:58–72CrossRefGoogle Scholar
  39. Opara-Nadi OA, Lal R (1987) Influence of method of mulch application on growth and yield of tropical root crops in southeastern Nigeria. Soil Tillage Res 9:217–230CrossRefGoogle Scholar
  40. Pemán J, Peguero-Pina JJ, Valladares F, Gil-Pelegrín E (2010) Evaluation of unventilated tree shelters in the context of Mediterranean climate: insights from a study on Quercus faginea seedlings assessed with a 3D architectural plant model. Ecol Eng 36:517–526CrossRefGoogle Scholar
  41. Ponder F Jr (2003) Ten-year results of tree shelters on survival and growth of planted hardwoods. North J Appl For 20(3):104–108Google Scholar
  42. Potter MJ (1988) Treeshelters improve survival and increase early growth rates. J Forest 86:39–41Google Scholar
  43. Potter MJ (1991) Tree shelters. Forestry commission handbook 7. HMSO Publications, London, p 89Google Scholar
  44. Rakocevic M (1997) Photomorphogenetic responses in plant species of upland grasslands in Serbia. Rev Res Work Fac Agric Belgrade 42:111–125Google Scholar
  45. Santos DL, Rakocevic M, Takaki M, Ribaski J (2006) Morphological and physiological responses of Cedrela Fissilis Vellozo (Meliaceae) seedlings to light. Braz Arch Biol Technol 49(1):171–182CrossRefGoogle Scholar
  46. Seigue A (1985) La forêt circumméditerranéenne et ses problèmes. Edition: maisonneuve et Larose. Paris V, ACCT Paris XV, p 302Google Scholar
  47. Sharpe WE, Swistock BR, Mecum KA, Demchik MC (1999) Greenhouse and field growth of northern red oak seedlings inside different types of tree shelters. J Arboric 25(5):249–257Google Scholar
  48. Skroch WA, Powell MA, Bilderback TE, Henry PH (1992) Mulches: durability, aesthetic value, weed control, and temperature. J Environ Hortic 10(1):43–45Google Scholar
  49. Sloan JL, Jacobs DF (2016) Ontogeny influences developmental physiology of post-transplant Quercus rubra seedlings more than genotype. Ann For Sci 73(4):987–993.  https://doi.org/10.1007/s13595-016-0584-z CrossRefGoogle Scholar
  50. Stinson JM, Brinen GH, McConnell DB, Black RJ (1990) Evaluation of landscape mulches. In Proc Fl St Hortic Soc 103:372–377Google Scholar
  51. Sun D, Dickinson G, Bragg A (1994) The establishment of Eucalyptus camaldulensis on a tropical saline site in north Queensland, Australia. Agr Ecosyst Environ 48:1–8CrossRefGoogle Scholar
  52. Thimijan RW, Heins RD (1985) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18:818–822Google Scholar
  53. Timbal J (2002) Croissance comparée du Chêne rouge et du Chêne des marais sur un sol agricole de Chalosse (Landes). Revue Forestière Française LIV 1:86–92CrossRefGoogle Scholar
  54. Tuley G (1985) The growth of young oak trees in shelters. Forestry 58:181–195CrossRefGoogle Scholar
  55. Van Lerberghe Ph (2004a) Les paillis biodégradables ont-ils un avenir en plantations ligneuses? Forêt-entreprise 157:20–21Google Scholar
  56. Van Lerberghe Ph (2004b) Le paillage des plantations ligneuses, une alternative au désherbage chimique. Forêt-entreprise 157:22–26Google Scholar
  57. Van Lerberghe Ph, Balleux P (2005) La protection totale des arbres contre les dégâts d’animaux. I. Les Manchons Grillagés en Plastique. Forêt-Entreprise 161:28–36Google Scholar
  58. West DH, Chappelka AH, Tilt KM, Ponder HG, Williams JD (1999) Effect of tree shelters on survival, growth, and wood quality of 11 tree species commonly planted in the southern United States. J Arboric 25:69–75Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taher Mechergui
    • 1
  • Marta Pardos
    • 2
  • Douglass F. Jacobs
    • 3
  1. 1.Faculté des Sciences de BizerteLaboratoire des Ressources Sylvo-Pastorales (Institut Sylvo-Pastoral de Tabarka)SejnaneTunisia
  2. 2.Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Centro de Investigacion ForestalMadridSpain
  3. 3.Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations