Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 6, pp 787–796 | Cite as

Phase Relations in the FeSe–FeGa2Se4–FeIn2Se4 System: Refinement of the Crystal Structures of FeIn2Se4 and FeGaInSe4

  • Faik Mammadagha Mammadov
  • Imamaddin Rajabali Amiraslanov
  • Samira Zakir Imamaliyeva
  • Mahammad Baba BabanlyEmail author


The phase equilibria in the FeSe–FeGa2Se4–FeIn2Se4 system were studied using the differential thermal analysis (DTA) and x-ray diffraction (XRD) methods. An isothermal section at 700 K, some isopleths sections of the phase diagram, and the projection of the liquidus surface were constructed. The results show that the 2FeSe–FeGaInSe4 section is quasibinary and of eutectic type. The crystal structure of FeGaInSe4 was refined by the Rietveld method, revealing that this compound cannot be regarded as an ordinary substitutional solid solution but as an ordered phase that differs qualitatively from FeIn2Se4 in the occupancy of crystallographic positions.


crystal structure FeSe–FeGa2Se4–FeIn2Se4 system FeGaInSe4 phase diagram Rietveld refinement solid solutions 



  1. 1.
    G.K. Ahluwalia, Applications of Chalcogenides: S, Se, and Te, Springer, Berlin, 2016Google Scholar
  2. 2.
    A.V. Shevelkov, Chemical Aspects of the Design of Thermoelectric Materials, Russ. Chem. Rev., 2008, 77, p 1-19ADSCrossRefGoogle Scholar
  3. 3.
    M.-R. Gao, Y.-F. Xu, J. Jiangand, and S.-H. Yu, Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices, Chem. Soc. Rev., 2013, 42, p 2986-3017CrossRefGoogle Scholar
  4. 4.
    C. Xia and J. Li, Recent Advances in Optoelectronic Properties and Applications of Two-Dimensional Metal Chalcogenides, J. Semicond., 2016, 37(051001–1), p 051009Google Scholar
  5. 5.
    M.B. Babanly, E.V. Chulkov, Z.S. Aliev, A.V. Shevel’kov, and I.R. Amiraslanov, Phase Diagrams in Materials Science of Topological Insulators Based on Metal Chalcogenides, Russ. J. Inorg. Chem., 2017, 62(13), p 1703-1729CrossRefGoogle Scholar
  6. 6.
    D. Niesner, S. Otto, V. Hermann, T. Fauster, T.V. Menshchikova, S.V. Eremeev, Z.S. Aliev, I.R. Amiraslanov, P.M. Echenique, M.B. Babanly, and E.V. Chulkov, Bulk and Surface Electron Dynamics in a p-type Topological Insulator SnSb2Te4, Phys. Rev. B, 2014, 89, p 081404-081405ADSCrossRefGoogle Scholar
  7. 7.
    M. Papagno, S. Eremeev, J. Fujii, Z.S. Aliev, M.B. Babanly, S.K. Mahatha, I. Vobornik, N.T. Mamedov, D. Pacile, and E.V. Chulkov, Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi6Te10, ACS Nano, 2016, 10, p 3518-3524CrossRefGoogle Scholar
  8. 8.
    Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom, Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure, Nature, 1999, 402, p 790-792ADSCrossRefGoogle Scholar
  9. 9.
    H. Haeuseler and S.K. Srivastava, Phase Equilibria and Layered Phases in the Systems A2X3-M2X3-M′X (A = Ga, In; M = Trivalent Metal; M’ = Divalent Metal; X = S, Se), Z. Kristallogr., 2000, 215, p 205-221Google Scholar
  10. 10.
    K.G.S. Ramnohotti, H. Djieutedjeu, J. Lopez, A. Page, N. Haldolaarachchige, H. Chi, P. Sahoo, C. Uher, D. Young, and P.F. Poudeu, Coexistence of High-Tc Ferromagnetism and n-type Electrical Conductivity in FeBi2Se4, J. Am. Chem. Soc., 2015, 137(2), p 691-698CrossRefGoogle Scholar
  11. 11.
    K.G.S. Ramnohotti, H. Djieutedjeu, J. Lopez, A. Page, N. Haldolaarachchige, H. Chi, P. Sahoo, C. Uher, D. Young, and P.F. Poudeu, Correction to “Coexistence of High-Tc Ferromagnetism and n-type Electrical Conductivity in FeBi2Se4”, J. Am. Chem. Soc., 2005, 137(12), p 4274CrossRefGoogle Scholar
  12. 12.
    H. Djieutedjeu, J.P.A. Makongo, A. Rotaru, A.M. Palasyuk, N.J. Takas, X. Zhou, K.G.S. Ran-mo-hotti, L. Spinu, C. Uher, and P.F.P. Poudeu, Crystal Structure, Charge Transport, and Magnetic Properties of MnSb2Se4, Eur. J. Inorg. Chem., 2011, 26, p 3969-3977CrossRefGoogle Scholar
  13. 13.
    T. Torres, V. Sagredo, L.M. de Chalbaud, G. Attolinb, and F. Bolzoni, Magnetic and Structural Characterization of the Semiconductor FeIn2Se4, Phys. B, 2006, 384, p 100-102ADSCrossRefGoogle Scholar
  14. 14.
    R. Cadenas, M. Quintero, E. Quintero, R. Tovar, M. Morocoima, J. Gonzalez, J. Ruiz, J.M. Broto, H. Rakoto, J.C. Woolley, and G. Lamarche, Magnetic Phase Diagram of MnGa2Se4 Compound, Phys. B, 2004, 346–347, p 413-415ADSCrossRefGoogle Scholar
  15. 15.
    N. Karthikeyan, G. Aravindsamy, P. Balamurugan, and K. Sivakumar, Thermoelectric Properties of Layered Type FeIn2Se4 Chalcogenide Compound, Mater. Res. Innov., 2017, 22, p 278-281CrossRefGoogle Scholar
  16. 16.
    N.N. Niftiyev, F.M. Mamedov, V.I. Quseynov, and SSh Kurbanov, AC Electrical Conductivity of FeIn2Se4 Single Crystals, Semiconductors, 2018, 52(6), p 683-685ADSCrossRefGoogle Scholar
  17. 17.
    I.V. Bodnar and S.V. Trukhanov, Magnetic Properties of FeIn2S4 Ternary Compound Crystals, Semiconductors, 2011, 45(7), p 861-864ADSCrossRefGoogle Scholar
  18. 18.
    K.G.S. Ranmohotti, H. Djieutedjeu, and P.F.P. Poudeu, Chemical Manipulation of Magnetic Ordering in Mn1–xSnxBi2Se4 Solid-Solutions, J. Am. Chem. Soc., 2012, 134(34), p 14033-14042CrossRefGoogle Scholar
  19. 19.
    H. Djieutedjeu, X. Zhou, H. Chi, N. Haldolaarachchige, K.G.S. Ranmohotti, C. Uher, D. Young, and P.F.P. Poudeu, Donor and Acceptor Impurity-Driven Switching of Magnetic Ordering in MnSb2−xSnx Se4, J. Mater. Chem. C, 2014, 2(30), p 6199-6210CrossRefGoogle Scholar
  20. 20.
    N.A. Moroz, J.S. Lopez, H. Djieutedjeu, K.G.S. Ranmohotti, A. Olvera, P. Ren, A. Page, N.J. Takas, C. Uher, and P.F.P. Poudeu, Indium Preferential Distribution Enables Electronic Engineering of Magnetism in FeSb2–xInxSe4 p-type high-Tc Ferromagnetic Semiconductors, Chem. Mater., 2016, 28(23), p 8570-8579CrossRefGoogle Scholar
  21. 21.
    G.F. Goya and V. Sagredo, Antiferromagnetism and Spin-Glass Transition in the FeInxCr2-xSe4 Series of Selenides, Sol. State Commun., 2003, 125, p 247-251ADSCrossRefGoogle Scholar
  22. 22.
    I.V. Bodnar and S.V. Trukhanov, Magnetic Properties of FexMn1−xIn2S4 Solid Solutions Single Crystals, Semiconductors, 2011, 45(11), p 1408-1413ADSCrossRefGoogle Scholar
  23. 23.
    V.P. Zlomanov, A.M. Khoviv, and A.Ju. Zavrazhnov, Physicochemical Analysis and Synthesis of Nonstoichiometric Solids. Materials Science—Advanced Topics, Y. Mastai, Ed., IntechOpen, 2013, p 103–128Google Scholar
  24. 24.
    S.Z. Imamaliyeva, D.M. Babanly, D.B. Tagiev, and M.B. Babanly, Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl5Te3 Structure: A Review, Russ. J. Inorg. Chem., 2018, 63(13), p 1703-1730CrossRefGoogle Scholar
  25. 25.
    L.F. Mashadiyeva, J.O. Kevser, I.I. Aliev, Y.A. Yusibov, D.B. Taghiyev, Z.S. Aliev, and M.B. Babanly, Phase Equilibria in the Ag2Te-SnTe-Sb2Te3 System and Thermodynamic Properties of the (2SnTe)1-x(AgSbTe2)x Solid Solution, J. Phase Equilib. Diffus., 2017, 38(5), p 603-614CrossRefGoogle Scholar
  26. 26.
    S.Z. Imamaliyeva, I.F. Mekhdiyeva, I.R. Amiraslanov, and M.B. Babanly, Phase Equilibria in the Tl2Te-Tl5Te3-Tl9TmTe6 Section of the Tl-Tm-Te System, J. Phase Equilib. Diffus., 2017, 38(5), p 764-770CrossRefGoogle Scholar
  27. 27.
    I.J. Alverdiyev, Z.S. Aliev, S.M. Bagheri, L.F. Mashadiyeva, Y.A. Yusibov, and M.B. Babanly, Study of the 2Cu2S + GeSe2↔Cu2Se + GeS2 Reciprocal System and Thermodynamic Properties of the Cu8GeS6-xSex Solid Solutions, J. Alloys Compd., 2017, 691, p 255-262CrossRefGoogle Scholar
  28. 28.
    Z.S. Aliev, I.R. Amiraslanov, M.-C. Record, J.-C. Tedenac, and M.B. Babanly, The YbTe-SnTe-Bi2Te3 System, J. Alloys Compd., 2018, 750, p 887-889CrossRefGoogle Scholar
  29. 29.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials park, 1990), 3875pGoogle Scholar
  30. 30.
    H. Okamoto, The Fe-Se (iron-selenium) System, J. Phase Equilib. Diffus., 1991, 12(3), p 383-389CrossRefGoogle Scholar
  31. 31.
    H. Izawa, Y. Tanaka, Y. Mizuguchi, and O. Miura, Crystal Structure Instability of FeSe Grains: Formation of Non-Superconducting Phase at the Grain Surface, Jpn. J. Appl. Phys., 2016, 55, p 053101ADSCrossRefGoogle Scholar
  32. 32.
    P.K. Maheshwari, L.M. Joshi, B. Gahtori, A.K. Srivastava, A. Gupta, S.P. Patnaik, and V.P.S. Awana, Flux free Growth of Superconducting FeSe Single Crystals, Mater. Res. Express, 2016, 3(7), p 076002ADSCrossRefGoogle Scholar
  33. 33.
    M.R. Allazov, P.K. Babayeva, and P.G. Rustamov, Investigation of the State Diagram and Some Physical Properties of the Phases of the System Ga2Se3-FeSe, Inorg. Mater., 1979, 15(7), p 1177-1180Google Scholar
  34. 34.
    S.A. Pauliukavets, I.V. Bychek, and M.P. Patapovich, Specific Features of the Growth, Structure, and Main Physicochemical Properties of FeGa2Se4 Single Crystals, Inorg. Mater. Appl. Res., 2018, 9(2), p 207-211CrossRefGoogle Scholar
  35. 35.
    M.-P. Pardo and J. Flahaut, Systeme Ga2Se3-FeSe, Etude Cristallographique Diagramme de Phase, Mat. Res. Bull., 1980, 15, p 1043-1048CrossRefGoogle Scholar
  36. 36.
    F.M. Mammadov, Phase Diagram of the FeSe – In2Se3 System, Azerb. Chem. J., 2019. CrossRefGoogle Scholar
  37. 37.
    T.I. Koneshova, T–x Phase Diagram of the InSe–FeSe2 Nonpseudobinary Join in the In–Fe–Se System, Russ. J. Inorg. Chem., 2004, 49(5), p 852-854Google Scholar
  38. 38.
    I.V. Bodnar, I.A. Viktorov, and S.A. Pavlyukovets, Growth, Structure, and Thermal Expansion Anisotropy of FeIn2Se4 Single Crystals, Inorg. Mater., 2010, 46(6), p 604-608CrossRefGoogle Scholar
  39. 39.
    S. Reil and H. Haeuseler, Materials with Layered Structures X1: Subsolidus Phase Diagram of the System FeIn2S4–FeIn2Se4, J. Alloys Compd., 1998, 270, p 83-87CrossRefGoogle Scholar
  40. 40.
    F.M. Mammadov, S.Z. Imamaliyeva, I.R. Amiraslanov, and M.B. Babanly, The Phase Diagram of the FeGa2Se4-Fein2se4system and the Crystal Structure of FeGaInSe4, Conden. Matter. Interphases, 2018, 20(4), p 604-610Google Scholar
  41. 41.
    F.M. Mammadov, Refinement of the Phase Diagrams of the FeSe – Ga2Se3 and Ga2Se3 – In2Se3 Systems, Azerb. Chem. J., 2018, 3, p 47-49Google Scholar
  42. 42.
    J. Emsley, The Elements, 3rd ed (Clarendon Press, Oxford, 1998), 270pGoogle Scholar
  43. 43.
    J.E. Post and D.L. Bish, Rietveld Refinement of Crystal Structures Using Power X-ray Diffraction Data. Modern Power Diffraction, Mineral. Soc. Am., 1989, 20, p 277-308Google Scholar
  44. 44.
    R. A. Young, The Rietveld Method. (Oxford University Press, New York, 1995), 298pGoogle Scholar
  45. 45.
    F.M. Mammadov, I.R. Amiraslanov, Y.R. Aliyeva, S.S. Ragimov, L.F. Mashadiyeva, and M.B. Babanly, Phase Equilibria in the MnGa2Te4-MnIn2Te4 System, Crystal Structure and Physical Properties of MnGaInTe4, Acta Chim. Slov., 2019, 66(2), p 466-472CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Institute of Catalysis and Inorganic Chemistry Named After Acad. M. NagiyevAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Institute of PhysicsAzerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations