Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 5, pp 725–731 | Cite as

Solid Solution Li(Ni,Mn,Co,Fe)O2 Homogeneity Range

  • G. D. NipanEmail author
  • M. N. Smirnova
  • M. A. Kop’eva
  • G. E. Nikiforova
  • N. P. Simonenko


By the combustion of the starch-based gel the two series of the nominal composition samples were synthesize: Li1.1Co1−x(Ni0.33Mn0.33Fe0.33)xO2 (0 ≤ x  ≤ 1) and Li1.1Ni1−x(Mn0.33Co0.33Fe0.33)xO2 (0 ≤ x  ≤ 1). The estimation of the homogeneity range’s extension of the type ɑ-NaFeO2 layered solid solution Li(Ni,Mn,Co,Fe)O2 was based on the results of the x-ray phase analysis of the obtained samples. It was found that the solid solution was continuous at the Li1+γCoO2-Li1+γNi0.33Mn0.33Fe0.33O2 conode and limited at the Li1+yNiO2-Li1+γMn0.33Co0.33Fe0.33O2 conode. Within the isobaric-isothermal tetrahedron Li1+yNiO2-Li1+yMnO2-Li1+yCoO2-Li1+yFeO2, the position of the stable range of the solid solution Li(Ni,Mn,Co,Fe)O2 is shown by the Li1+yCoO2-Li1+yNi0.5Mn0.5O2-Li1+yFeO2 and Li1+yNiO2-Li1+yMn0.5Co0.5O2-Li1+yFeO2 sections.


gel combustion Li-ion battery materials solid solution Li(Ni,Mn,Co,Fe)O2 x-ray method 



This work was supported by IGIC RAS state assignment.


  1. 1.
    K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0 < x ≤ 1): A New Cathode Material for Batteries of High Energy Density, Mater. Res. Bull., 1980, 15, p 783–789CrossRefGoogle Scholar
  2. 2.
    T. Ohzuku and Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Litium-Ion Batteries, Chem. Lett., 2001, 30, p 642–643CrossRefGoogle Scholar
  3. 3.
    G.D. Nipan and A.I. Klyndyuk, Solid Solutions in the Li-Ni-Mn-Co-O System, Inorgan. Mater., 2019, 55, p 135–142CrossRefGoogle Scholar
  4. 4.
    H.-J. Noh, S. Youn, C.S. Youn, and Y.-K. Sun, Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries, J. Power Sour., 2013, 233, p 121–130CrossRefGoogle Scholar
  5. 5.
    X. Zhang, C. Yu, X. Huang, J. Zheng, X. Guan, D. Luo, and L. Li, Novel Composites Li[LixNi0.34−xMn0.47Co0.19]O2 (0.18 ≤ x ≤ 0.21): Synthesis and Application as High-Voltage Cathode with Improved Electrochemical Performance for Lithium Ion Batteries, Electrochim. Acta, 2012, 81, p 233–238CrossRefGoogle Scholar
  6. 6.
    Y.S. Meng, Y.W. Wu, B.J. Hwang, Y. Li, and G. Ceder, Combining ab initio Computation with Experiments for Designing New Electrode Materials for Advanced Lithium Batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2, J. Electrochem. Soc., 2004, 151, p A1134–A1140CrossRefGoogle Scholar
  7. 7.
    Y. Idemoto and T. Matsui, Property, Electronic and Crystal Structures, Thermodynamic Stability, and Cathode Performance of Lix(Mn Co, Ni, M)O2 (M = Al, Ti, Fe) as a Cathode Active Material for Li Secondary Battery, Electrochemistry, 2007, 75, p 791–799, in JapaneseCrossRefGoogle Scholar
  8. 8.
    J. Wilcox, S. Patoux, and M. Doeff, Structure and Electrochemistry LiNi1/3Co1/3yMyMn1/3O2 (M = Ti, Al, Fe) Positive Electrode Materials, J. Electrochem. Soc., 2009, 156, p A192–A198CrossRefGoogle Scholar
  9. 9.
    J. Mohd Hilmi, M. Nor Sabirin, R. Yahya, and N. Kamarulzaman, Synthesis, Characterization and Charge-Discharge Profile of LiMn0.3Co0.3Ni0.3Fe0.1O2 Prepared Via Sol–Gel Method, Adv. Mater. Res., 2012, 501, p 56–60CrossRefGoogle Scholar
  10. 10.
    J.-T. Son and E. Cairns, Structure and Electrochemical Characterization of LiNi0.3Co0.3Mn0.3Fe0.1O2 Cathode for Lithium Secondary Battery, Korean J. Chem. Eng., 2007, 24, p 888–891CrossRefGoogle Scholar
  11. 11.
    W. El Mofid, Synthesis and Characterization of Novel Cathode Material with Improved Specific Capacity and Safety for Lithium Ion Batteries. Dissertation, Techniscen Universität Ilmenau., 2016Google Scholar
  12. 12.
    J.D. Wilcox, E.E. Rodrigues, and M.M. Doeff, The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li(Ni0.4Co0.2−yMyMn0.4)O2 Materials, J. Electrochem. Soc., 2009, 156, p A1011–A1018CrossRefGoogle Scholar
  13. 13.
    R. Shunmugasundaram, R.S. Arumugam, and J.R. Dahn, High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss, Chem. Mater., 2015, 27, p 757–767CrossRefGoogle Scholar
  14. 14.
    G.D. Nipan, M.N. Smirnova, M.A. Kop’eva, and G.E. Nikiforova, Gel Combustion Synthesis of Li(Ni, Mn Co, Fe)O2 Solid Solutions, Russ. J. Inorg. Chem., 2019, 64, p 1304–1308CrossRefGoogle Scholar
  15. 15.
    W.H. Kan, A. Huq, and A. Manthiram, Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li-Ni-Mn-Co-O System, Chem. Mater., 2016, 28, p 1832–1837CrossRefGoogle Scholar
  16. 16.
    H. Das, A. Urban, W. Huang, and G. Ceder, First-Principles Simulation of the (Li-Ni-Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials, Chem. Mater., 2017, 29, p 7840–7851CrossRefGoogle Scholar
  17. 17.
    S.-W. Lee, H. Kim, M.-S. Kim, H.-C. Youn, K. Kang, B.-W. Cho, K.C. Roh, and K.-B. Kim, Improved Electrochemical Performance of Cathode Material Synthesized by Citric Acid Assisted Sol-Gel Method for Lithium Ion Batteries, J. Power. Sour., 2016, 315, p 261–268ADSCrossRefGoogle Scholar
  18. 18.
    X. Zhang, W.J. Jiang, A. Mauger, F. Gendron, and C.M. Julien, Minimization of the Cation Mixing in Li1+x(NMC)1−xO2 as Cathode Material, J. Power. Sour., 2010, 195, p 1292–1301ADSCrossRefGoogle Scholar
  19. 19.
    D. Mohanty and H. Gabrish, Microstructural Investigation of LixNi1/3Mn1/3Co1/3O2 (x ≤ 1) And Its Aged Products Via Magnetic and Diffraction Study, J. Power. Sour., 2012, 220, p 405–412ADSCrossRefGoogle Scholar
  20. 20.
    E. McCalla, A.W. Rowe, R. Shunmugasundaram, and J.R. Dahn, Structural Study of the Li-Mn-Ni Oxide Pseudoternary System of Interest for Positive Electrodes of Li-ion Batteries, Chem. Mater., 2013, 25, p 989–999CrossRefGoogle Scholar
  21. 21.
    M. Antaya, K. Ceams, J.S. Preston, J.N. Reimers, and J.R. Dahn, In situ Growth of layered, Spinel, and Rocksolt LiCoO2 by Laser Ablation Deposition, J. Appl. Phys., 1994, 76, p 2799–2806ADSCrossRefGoogle Scholar
  22. 22.
    T.-F. Yi, X. Han, S.-Y. Yang, and Y.-R. Zhu, Enhanced Electrochemical Performance of Li-rich Low-Co Li1.2Mn0.56Ni0.16 Co0.08−xAlxO2 (0 ≤ x≤0.08) as Cathode Materials, Sci. China Mater., 2016, 59, p 618–628CrossRefGoogle Scholar
  23. 23.
    K.C. Kam and M.M. Doeff, Aliovalent Titanium Substitution in Layered Mixed Li Ni-Mn-Co Oxides for Lithium Battery Applications, J. Mater. Chem., 2011, 21, p 9991–9993CrossRefGoogle Scholar
  24. 24.
    Y. Lu, M. Pang, S. Shi, Q. Ye, Z. Tian, and T. Wang, Enhanced Electrochemical Properties of Zr4+−doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-Ion Battery at Elevated Temperature, Sci. Rep., 2018, 8(2981), p 1–14Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • G. D. Nipan
    • 1
    Email author
  • M. N. Smirnova
    • 1
  • M. A. Kop’eva
    • 1
  • G. E. Nikiforova
    • 1
  • N. P. Simonenko
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry of RASMoscowRussia

Personalised recommendations