Advertisement

Phase Equilibria and Diffusion in the Ni-Cr-Pt System at 1200 °C

  • Christopher M. EastmanJr.
  • Ji-Cheng ZhaoEmail author
Article
  • 14 Downloads

Abstract

Pt modified NiAl, which is often simply called Pt aluminide, is widely used in jet engines as a protective coating against oxidation and hot corrosion as well as a bond coat for thermal barrier coatings. Phase equilibria and diffusion coefficients in the Ni-Cr-Pt ternary system are thus valuable data for modeling the behavior of Pt aluminide coatings on Ni-based superalloys in which Cr is an essential alloying element. A Ni-Cr-Pt diffusion multiple was made and annealed at 1200 °C for 100 h to obtain the first reliable isothermal section phase diagram for this ternary system. Interdiffusion coefficients were extracted from the measured diffusion concentration profiles using a forward simulation analysis for all the single-phase regions of the Ni-Cr, Ni-Pt and Cr-Pt binary systems. The impurity diffusion coefficient data obtained from this study are combined with literature data to assess reliable Arrhenius equations for the impurity diffusion coefficients of Pt in Ni, Ni in Pt, and Cr in Ni. An Arrhenius equation for the impurity diffusion coefficient of Cr in Pt is recommended for the first time by combining a fitted prefactor from experimental data and an activation energy value from first principles calculations.

Keywords

binary diffusion diffusion couples diffusivity coefficient experimental phase equilibria impurity diffusivity phase diagram 

Notes

Acknowledgments

The authors would like to thank Jay Tiley for arranging the EPMA measurements for this study. The authors also greatly appreciate Qiaofu Zhang and Zhangqi Chen for sharing their FSA programs and providing support in performing some of the diffusion coefficient extractions. This study was supported by the internal funds of The Ohio State University.

References

  1. 1.
    J. Benoist, K.F. Badawi, A. Malié, and C. Ramade, Microstructure of Pt Modified Aluminide Coatings on Ni-Based Superalloys Without Prior Pt Diffusion, Surf. Coat. Technol., 2005, 194(1), p 48–57CrossRefGoogle Scholar
  2. 2.
    R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315–348CrossRefGoogle Scholar
  3. 3.
    M.R. Jackson and J.R. Rairden, Protective Coatings for Superalloys and the Use of Phase Diagrams, Appl. Phase Diagr. Metall. Ceram., 1977, 496, p 423–439Google Scholar
  4. 4.
    I.B. Borovskiy, I.D. Machukova, and Y.E. Ugaste, Local X-ray Spectranalysis of Mutual Diffusion in Binary Systems Forming a Continuous Series of Solid Solutions—II. The Systems Fe-Ni, Ni-Co, Ni-Pt and Co-Pt, Fiz. Met. i Metalloved., 1967, 24(3), p 436–441Google Scholar
  5. 5.
    Y.E. Ugaste, Mutual Diffusion in the System Ni-Cr, Fiz. Met. i Metalloved., 1967, 24(3), p 442–449Google Scholar
  6. 6.
    Q. Zhang and J.-C. Zhao, Impurity and Interdiffusion Coefficients of the Cr-X (X = Co, Fe, Mo, Nb, Ni, Pd, Pt, Ta) Binary Systems, J. Alloys Compd., 2014, 604, p 142–150CrossRefGoogle Scholar
  7. 7.
    W. Gong, L. Zhang, D. Yao, and C. Zhou, Diffusivities and Atomic Mobilities in Fcc Ni-Pt Alloys, Scr. Mater., 2009, 61(1), p 100–103CrossRefGoogle Scholar
  8. 8.
    V.D. Divya, U. Ramamurty, and A. Paul, Interdiffusion and the Vacancy Wind Effect in Ni-Pt and Co-Pt Systems, J. Mater. Res., 2011, 26(18), p 2384–2393ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Tucker, R. Najafabadi, T.R. Allen, and D. Morgan, Ab Initio-Based Diffusion Theory and Tracer Diffusion in Ni-Cr and Ni-Fe Alloys, J. Nucl. Mater., 2010, 405(3), p 216–234ADSCrossRefGoogle Scholar
  10. 10.
    S.B. Jung, T. Yamane, Y. Minamino, K. Hirao, H. Araki, and S. Saji, Interdiffusion and its Size Effect in Nickel Solid Solutions of Ni-Co, Ni-Cr and Ni-Ti Systems, J. Mater. Sci. Lett., 1992, 11(20), p 1333–1337CrossRefGoogle Scholar
  11. 11.
    Y. Minamino, H. Yoshida, S.B. Jung, K. Hirao, and T. Yamane, Diffusion of Platinum and Molybdenum in Ni and Ni3Al, Defect Diffus. Forum, 1997, 143–147, p 257–262CrossRefGoogle Scholar
  12. 12.
    J.-C. Zhao, A Combinatorial Approach for Structural Materials, Adv. Eng. Mater., 2001, 3(3), p 143–147CrossRefGoogle Scholar
  13. 13.
    J.-C. Zhao, Combinatorial Approaches as Effective Tools in the Study of Phase Diagrams and Composition–Structure–Property Relationships, Prog. Mater Sci., 2006, 51(5), p 557–631CrossRefGoogle Scholar
  14. 14.
    J.-C. Zhao, Reliability of the Diffusion-Multiple Approach for Phase Diagram Mapping, J. Mater. Sci., 2004, 39(12), p 3913–3925ADSCrossRefGoogle Scholar
  15. 15.
    X. Zheng, D.G. Cahill, R. Weaver, and J.-C. Zhao, Micron-Scale Measurements of the Coefficient of Thermal Expansion by Time-Domain Probe Beam Deflection, J. Appl. Phys., 2008, 104(7), p 073509ADSCrossRefGoogle Scholar
  16. 16.
    C.E. Campbell, J.-C. Zhao, and M.F. Henry, Comparison of Experimental and Simulated Multicomponent Ni-Base Superalloy Diffusion Couples, J. Phase Equilibria Diffus., 2004, 25(1), p 6–15CrossRefGoogle Scholar
  17. 17.
    X. Du and J.-C. Zhao, Facile Measurement of Single-Crystal Elastic Constants from Polycrystalline Samples, npj Comput. Mater., 2017, 3(1), p 17ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Wei, X. Zheng, D.G. Cahill, and J.-C. Zhao, Invited Article: Micron Resolution Spatially Resolved Measurement of Heat Capacity Using Dual-Frequency Time-Domain Thermoreflectance, Rev. Sci. Instrum., 2013, 84(7), p 071301ADSCrossRefGoogle Scholar
  19. 19.
    S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, and J.-C. Zhao, Thermal Conductivity Imaging at Micrometre-Scale Resolution for Combinatorial Studies of Materials, Nat. Mater., 2004, 3(5), p 298–301ADSCrossRefGoogle Scholar
  20. 20.
    Q. Zhang and J.-C. Zhao, Extracting Interdiffusion Coefficients from Binary Diffusion Couples Using Traditional Methods and a Forward-Simulation Method, Intermetallics, 2013, 34, p 132–141CrossRefGoogle Scholar
  21. 21.
    Q. Zhang, Z. Chen, W. Zhong, and J.-C. Zhao, Accurate and Efficient Measurement of Impurity (Dilute) Diffusion Coefficients Without Isotope Tracer Experiments, Scr. Mater., 2017, 128, p 32–35ADSCrossRefGoogle Scholar
  22. 22.
    F. Sauer and V. Freise, Diffusion in binaren Gemischen mit Volumenanderung, Zeitschrift für Elektrochemie, 1962, 66(4), p 353–362Google Scholar
  23. 23.
    Z. Chen, Z.-K. Liu, and J.-C. Zhao, Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples, Metall. Mater. Trans. A, 2018, 49(7), p 3108–3116CrossRefGoogle Scholar
  24. 24.
    W. Zhong and J.-C. Zhao, First Reliable Diffusion Coefficients for Mg-Y and Additional Reliable Diffusion Coefficients for Mg-Sn and Mg-Zn, Metall. Mater. Trans. A, 2017, 48(12), p 5778–5782CrossRefGoogle Scholar
  25. 25.
    S. Vivès, P. Bellanger, S. Gorsse, C. Wei, Q. Zhang, and J.-C. Zhao, Combinatorial Approach Based on Interdiffusion Experiments for the Design of Thermoelectrics: Application to the Mg2(Si, Sn) Alloys, Chem. Mater., 2014, 26(15), p 4334–4337CrossRefGoogle Scholar
  26. 26.
    L. Zhu et al., Measurement of Interdiffusion and Impurity Diffusion Coefficients in the Bcc Phase of the Ti-X (X = Cr, Hf, Mo, Nb, V, Zr) Binary Systems Using Diffusion Multiples, J. Mater. Sci., 2017, 52(6), p 3255–3268ADSCrossRefGoogle Scholar
  27. 27.
    W. Zhong and J.-C. Zhao, First Experimental Measurement of Calcium Diffusion in Magnesium Using Novel Liquid-Solid Diffusion Couples and Forward-Simulation Analysis, Scr. Mater., 2017, 127, p 92–96CrossRefGoogle Scholar
  28. 28.
    Z. Chen, Q. Zhang, and J.-C. Zhao, Pydiffusion: A Python Library for Diffusion Simulation and Data Analysis, J. Open Res. Softw., 2019, 7(1), p 13CrossRefGoogle Scholar
  29. 29.
    M. Venkatraman and J.P. Neumann, The Cr-Pt (Chromium–Platinum) System, Bull. Alloy Phase Diagr., 1990, 11(1), p 16–21CrossRefGoogle Scholar
  30. 30.
    M.S.A. Karunaratne and R.C. Reed, Interdiffusion of the Platinum-Group Metals in Nickel at Elevated Temperatures, Acta Mater., 2003, 51(10), p 2905–2919CrossRefGoogle Scholar
  31. 31.
    H. Wu, T. Mayeshiba, and D. Morgan, High-Throughput Ab-Initio Dilute Solute Diffusion Database, Sci. Data, 2016, 3, p 1–11CrossRefGoogle Scholar
  32. 32.
    W. Zhong and J.-C. Zhao, Measurements of Diffusion Coefficients of Ce, Gd and Mn in Mg, Materialia, 2019, 7, p 100353CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.TimkenSteel CorporationCantonUSA
  3. 3.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations