Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 1, pp 86–92 | Cite as

Study of Nonequilibrium Solidification Region in Sn96.5Ag3Cu0.5 Alloys with Carbon Nanotube Admixtures by Electrical Resistivity Measurements

  • Yu. PlevachukEmail author
  • O. Tkach
  • P. SvecSr.
  • P. Svec


A melting-solidification region of nanocomposites based on Sn96.5Ag3Cu0.5 (SAC305) alloys with minor admixtures of carbon nanotubes (from 0.005 to 0.03 wt.%) was studied by electrical resistivity measurements using a four-probe method. The samples were produced by planar flow casting technique in the form of thin ribbons. Temperature dependencies of the electrical resistivity revealed a hysteresis between the heating and cooling curves in the melting-solidification temperature range due to the nonequilibrim solidification. An influence of the carbon nanotubes content on electrical resistivity values has been analyzed.


carbon nanotubes electrical resistivity lead-free solder melting-solidification nonequilibrium solidification SAC305 



This work was supported by the Slovak Scientific Grant Agencies under Grant Numbers VEGA 1/0018/15 and APVV 15-0049, the National Scholarship Program of the Slovak Republic (NSP) and Ministry of Education and Science of Ukraine.


  1. 1.
    S.K. Kang, W.K. Choi, D.-Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K.J. Puttlitz, Ag3Sn Plate Formation in the Solidification of Near-Ternary Eutectic Sn-Ag-Cu, JOM, 2003, 55, p 61-65CrossRefGoogle Scholar
  2. 2.
    I.E. Anderson, Development of Sn-Ag-Cu and Sn-Ag-Cu-X Alloys for Pb-Free Electronic Solder Applications, J. Mater. Sci.: Mater. Electron., 2007, 18, p 55-76Google Scholar
  3. 3.
    W. Liu and N.-C. Lee, The Effects of Additives to SnAgCu Alloys on Microstructure and Drop Impact Reliability of Solder Joints, JOM, 2007, 59, p 26-31CrossRefGoogle Scholar
  4. 4.
    D. Giuranno, S. Delsante, G. Borzone, and R. Novakovic, Effects of Sb Addition on the Properties of Sn-Ag-Cu/(Cu, Ni) Solder Systems, J. Alloy. Compd., 2016, 689, p 918-930CrossRefGoogle Scholar
  5. 5.
    L. Zhang, J. Han, Y. Guo, and C. He, Effect of Rare Earth Ce on the Fatigue Life of SnAgCu Solder Joints in WLCSP Device Using FEM and Experiments, Mater. Sci. Eng., A, 2014, 597, p 219-224CrossRefGoogle Scholar
  6. 6.
    L. Ma, Y. Zuo, S. Liu, G. Fu et al., Whisker Growth Behaviors in POSS-Silanol Modified Sn3.0Ag0.5Cu Composite Solders, J. Alloy. Compd., 2016, 657, p 400-407CrossRefGoogle Scholar
  7. 7.
    S. Chellvarajoo, M.Z. Abdullah, and C.Y. Khor, Effects of Diamond Nanoparticles Reinforcement into Lead-Free Sn-3.0Ag-0.5Cu Solder Pastes on Microstructure and Mechanical Properties After Reflow Soldering Process, Mater. Des., 2015, 82, p 206-215CrossRefGoogle Scholar
  8. 8.
    Y. Gu, Y. Liu, X.C. Zhao, S.L. Wen, H. Li, and Y. Wang, Effects of Cobalt Nanoparticles Addition on Shear Strength, Wettability anf Interfacial Intermetallic Growth of Sn-3.0Ag-0.5Cu Solder During Thermal Cycling, Mater. Sci. Forum, 2015, 815, p 97-102CrossRefGoogle Scholar
  9. 9.
    M.N. Bashir, A.S.M.A. Haseeb, A.M.S. Rahman, M.A. Fazal, and C.R. Kao, Reduction of Electromigration Damage in SAC305 Solder Joints, J. Mater. Sci., 2015, 50, p 6748-6756ADSCrossRefGoogle Scholar
  10. 10.
    A. Yakymovych, Yu. Plevachuk, P. Švec, Sr, D. Janičkovič, P. Šebo, N. Beronská, M. Nosko, L. Orovcik, A. Roshanghias, and H. Ipser, Nanocomposite SAC Solders: Morphology, Electrical and Mechanical Properties of Sn-3.8Ag-0.7Cu Solders by Adding Co Nanoparticles, J Mater. Sci: Mater. Electr., 2017, 28, p 10965-10973Google Scholar
  11. 11.
    A. Yakymovych, Y. Plevachuk, V. Sklyarchuk, B. Sokoliuk, T. Galya, and H. Ipser, Microstructure and Electro-Physical Properties of Sn-3.0Ag-0.5Cu Nanocomposite Solder Reinforced with Ni Nanoparticles in the Melting-Solidification Temperature Range, J. Phase Equilib. Diffus., 2017, 38, p 217-222CrossRefGoogle Scholar
  12. 12.
    D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, High-Reliability Low-Ag-Content Sn-Ag-Cu Solder Joints for Electronics Applications, J. Electron. Mater., 2012, 41, p 2631-2658ADSCrossRefGoogle Scholar
  13. 13.
    A.K. Gain and Y.C. Chan, The Influence of a Small Amount of Al and Ni Nano-Particles on the Microstructure, Kinetics and Hardness of Sn-Ag-Cu Solder on OSP-Cu Pads, Intermetallics, 2012, 29, p 48-55CrossRefGoogle Scholar
  14. 14.
    S.L. Tay, A.S.M.A. Haseeb, and M.R. Johan, Addition of Cobalt Nanoparticles into Sn-3.8Ag-0.7Cu Lead-Free Solder by Paste Mixing, Solder Surf. Mt. Technol., 2011, 23, p 10-14CrossRefGoogle Scholar
  15. 15.
    S. Ijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354, p 56-58ADSCrossRefGoogle Scholar
  16. 16.
    T.T. Dele-Afolabi, M.A. Azmah Hanim, M. Norkhairunnisa, and H.M. Yusoff, Physical and Mechanical Properties Enhancement of Lead Free Solders Reinforced with Carbon Nanotubes: A Critical Review, J. Appl. Sci. Agric., 2014, 8(8), p 2600-2608Google Scholar
  17. 17.
    L. Valentini, J. Biagiotti, J.M. Kenny, and S. Santucci, Morphological Characterization of Single-Walled Carbon Nanotubes-PP Composites, Compos. Sci. Technol., 2003, 63, p 1149-1153CrossRefGoogle Scholar
  18. 18.
    C. Balazsi, Z. Shen, Z. Konya, Z. Kasztovszky, F. Weber, Z. Vertesy, L.P. Biro, I. Kiricsi, and P. Arato, Processing of Carbon Nanotube Reinforced Silicon Nitride Composites by Spark Plasma Sintering Compos, Sci. Technol., 2005, 65(5), p 727-733Google Scholar
  19. 19.
    M. Kartel, Y. Sementsov, S. Mahno, V. Trachevskiy, and W. Bo, Polymer Composites Filled with Multiwall Carbon Nanotubes, Univers. J. Mater. Sci., 2016, 4(2), p 23-31CrossRefGoogle Scholar
  20. 20.
    S. Chen, P. Chen, and C. Wang, Lowering of Sn-Sb Alloy Melting Points Caused by Substrate Dissolution, J. Electron. Mater., 2006, 35, p 1982-1985ADSCrossRefGoogle Scholar
  21. 21.
    M. Deanko, M. Paluga, D.M. Kepaptsoglou, D. Muller, P. Mrafko, D. Janickovic, E. Hristoforou, I. Skorvanek, and P. Svec, Pecularities of Electrical Resistivity During Transformations in Amorphous and Nanocrystalline Alloys, J. Alloy. Compd., 2007, 434–435, p 248-251CrossRefGoogle Scholar
  22. 22.
    K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys, J. Electron. Mater., 2000, 29, p 1122-1136ADSCrossRefGoogle Scholar
  23. 23.
    V. Sklyarchuk, A. Yakymovych, I. Shtablavyy, I. Shevernoha, M. Kozlovskii, R. Khairulin, and S. Stankus, Structure and Physical Properties of Pb-Sn Melts, Ukr. J. Phys., 2010, 55(9), p 980-987Google Scholar
  24. 24.
    M.P. Kozlovskii, Influence of an External Field on the Second Order Phase Transition: Method for Description of the Critical Behavior of 3d Systems, Ukr. J. Phys. Reviews, 2009, 5(1), p 61-99, in UkrainianGoogle Scholar
  25. 25.
    S.S. Kutateladze and V.E. Nakoryakov, Ed., Phase Transitions in Pure Metals and Binary Alloys, Academy of Sciences of the USSR Siberian Branch, Institute of Thermophysics, Novosibirsk, 1980Google Scholar
  26. 26.
    O.G. Shpyrko, R. Streitel, V.S.K. Balagurusamy, Y.A. Grigoriev, M. Deutsch, B.M. Ocko, M. Meron, B. Lin, and P.S. Pershan, Crystalline Surface Phases of the Liquid Au-Si Eutectic Alloy, Phys. Rev. B, 2007, 76, p 245436ADSCrossRefGoogle Scholar
  27. 27.
    V. Sklyarchuk, Yu Plevachuk, G. Gerbeth, and S. Eckert, Melting-Solidification Process in Pb-Bi Melts, J. Phys: Conf. Ser., 2007, 79, p 012019Google Scholar
  28. 28.
    J.S. Hwang, Modern Solder Technology for Competitive Electronics Manufacturing, McGraw-Hill, New York, 1996Google Scholar
  29. 29.
    N.A.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, and H. Arof, Effect of Ag Content and the Minor Alloying Element Fe on the Electrical Resistivity of Sn-Ag-Cu Solder Alloy, J. Alloys Compd., 2014, 599, p 114-120CrossRefGoogle Scholar
  30. 30.
    S.M.L. Nai, J. Wei, and M. Gupta, Effect of Carbon Nanotubes on the Shear Strength and Electrical Resistivity of a Lead-Free Solder, J. Electron. Mater., 2008, 37(4), p 515-522ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Metal PhysicsIvan Franko National University of LvivLvivUkraine
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations