Advertisement

Professor Jan Vřešťál and His Contributions Towards the Implementing of Ab Initio Data into the CALPHAD Method and Extension of the Phase Diagram Calculations Down to 0 K

  • A. Kroupa
  • J. Pavlů
  • M. Šob
Article
  • 36 Downloads

Abstract

The paper describes the development of implementation of ab initio results into the CALPHAD method and of calculations of phase diagrams down to 0 K, where Prof. Jan Vřešťál is among pioneers paving new ways. His scientific activities contributed considerably to improved versatility and effectivity of the CALPHAD method, which was supported by numerous descriptions of binary and ternary systems accomplished with the help of data having stronger physical grounds and thus bringing more physics into the CALPHAD approach. He also brought the CALPHAD method to Czechoslovak scientific institutions and, due to his merit, numerous younger colleagues learned to apply this very effective approach.

Keywords

ab initio methods alloys CALPHAD approach computational studies intermetallics phase diagram 

References

  1. 1.
    J. Vřešťál and J. Kučera, Vapor Pressure and Thermodynamic Study of the Co-Ni System, Metall. Mater. Trans. B, 1971, 2, p 3367–3372ADSCrossRefGoogle Scholar
  2. 2.
    J. Vřešťál and K. Stránský, Determination of Thermodynamic Activities of the Nickel-Copper System Components at T equals 1400 K, Kovove Mater., 1973, 11, p 203–212Google Scholar
  3. 3.
    B. Million, J. Růžičková, J. Vřešťál, V.I. Patoka, V.I. Silantjev, and V.N. Kolesnik, Diffusion and Thermodynamic Properties of Ni-V System, Czech. J. Phys., 1980, 30, p 541–551ADSCrossRefGoogle Scholar
  4. 4.
    J. Vřešťál and J. Velíšek, Comparison of the Fitting Capabilities of Several Equations for the Composition Dependence of Excess Free Enthalpy in Binary Alloys, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1982, 6, p 297–305CrossRefGoogle Scholar
  5. 5.
    J. Velíšek and J. Vřešťál, Correlation of Thermodynamic and Phase Data in System Iron-Chromium-Nickel, Kovove Mater., 1982, 20, p 645–657Google Scholar
  6. 6.
    A. Kroupa, J. Vřešťál, and L. Karmazin, Thermodynamic Calculation of Phase Equilibria and Determination of Boundaries of Phase Regions of Fe-X-Y-Z-C Equilibrium Diagrams, Kovove Mater., 1989, 27, p 307–315Google Scholar
  7. 7.
    A. Kroupa, L. Karmazin, and M. Svoboda, The Calculation of Phase Compositions of Hypereutectoid Low Alloy Steel at Temperatures Within and Around the Eutectoid Zone, Mater. Sci. Eng. A, 1990, 127, p L11–L13CrossRefGoogle Scholar
  8. 8.
    J. Sopoušek, A. Kroupa, R. Dojiva, and J. Vřešťál, The PD-Package for Multicomponent Isobaric Phase Equilibrium Calculations, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1993, 17, p 229–235CrossRefGoogle Scholar
  9. 9.
    R. Pícha, J. Vřešťál, and A. Kroupa, Prediction of Alloy Surface Tension Using a Thermodynamic Database, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2004, 28, p 141–146CrossRefGoogle Scholar
  10. 10.
    P. Soven, Coherent-Potential Model of Substitutional Disordered Alloys, Phys. Rev., 1967, 156, p 809–814ADSCrossRefGoogle Scholar
  11. 11.
    B. Velický, S. Kirkpatrick, and H. Ehrenreich, Single-Site Approximations in Electronic Theory of Simple Binary Alloys, Phys. Rev., 1968, 175, p 747–766ADSCrossRefGoogle Scholar
  12. 12.
    K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel et al., Reproducibility in Density Functional Theory Calculations of Solids, Science, 2016, 351, p aad3000-1–aad3000-7CrossRefGoogle Scholar
  13. 13.
    F. Ducastelle, Order and Phase Stability in Alloys, North-Holland, New York, 1991Google Scholar
  14. 14.
    A. Gonis, Green Functions for Ordered and Disordered Systems, North Holland, Amsterdam, 1992zbMATHGoogle Scholar
  15. 15.
    I. Turek, V. Drchal, J. Kudrnovský, P. Weinberger, and M. Šob, Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Springer, New York, 1997 (originally published by Kluwer, Boston, 1997)Google Scholar
  16. 16.
    G. Ghosh, A. van de Walle, M. Asta, and G.B. Olson, Phase Stability of the Hf-Nb System: From First-Principles to CALPHAD, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2002, 26, p 491–511CrossRefGoogle Scholar
  17. 17.
    L. Wang, M. Šob, J. Havránková, and J. Vřešťál, First-Principles Calculations of Formation Energy in Cr-Based σ-Phases, CALPHAD XXVII, May 17-22, 1998 (Beijing, China), Abstract Book, 1998, p 14Google Scholar
  18. 18.
    L. Kaufman, and A.T. Dinsdale, Summary of the Proceedings of the CALPHAD XXVII Meeting: 17-22 May 1998 Beijing, China, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1999, 23, p 265–303Google Scholar
  19. 19.
    J. Vřešťál, J. Houserová, M. Šob, and M. Friák, Calculation of Phase Equilibria with σ-Phase in Some Cr-Based Systems Using First-Principles Calculation Results, The 16th Discussion Meeting on Thermodynamics of Alloys (TOFA), May 8-11, 2000 (Stockholm, Sweden), Abstract Book, 2000, p 33Google Scholar
  20. 20.
    M. Friák, M. Šob, J. Houserová, and J. Vřešťál, Modeling the Sigma-Phase Based on First-Principles Calculations Results, CALPHAD XXIX, June 18-23, 2000 (Cambridge, MA, USA), Abstract Book, 2000, p 4Google Scholar
  21. 21.
    L. Kaufman, Summary of the Proceedings of the Calphad XXIX Meeting: 18-23 June 2000 Massachusetts Institute of Technology Cambridge, Massachusetts, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2000, 24, p 381–426Google Scholar
  22. 22.
    M. Friák, M. Šob, J. Houserová, and J. Vřešťál, Modelling the Sigma-Phase Based on Equilibrium Volume First-Principles Calculations Results, CALPHAD XXX, May 27-June 1, 2001 (York, England), Abstract Book, 2001, p 13Google Scholar
  23. 23.
    F. Hayes, and A. Watson, Summary of the Proceedings of the Calphad XXX Meeting: 27th May-1st June 2001 York, England, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2001, 25, p 477–507Google Scholar
  24. 24.
    B.P. Burton, N. Dupin, S.G. Fries, G. Grimvall, A.F. Guillermet, P. Miownik, W.A. Oates, and V. Vinograd, Using Ab Initio Calculations in the Calphad Environment, Z. Metallkd., 2001, 92, p 514–525Google Scholar
  25. 25.
    J. Havránková, J. Vřešťál, L.G. Wang, and M. Šob, Ab Initio Analysis of Energetics of Sigma-Phase Formation in Cr-Based Systems, Phys. Rev. B, 2001, 63, p 174104ADSCrossRefGoogle Scholar
  26. 26.
    L. Kaufman, P.E.A. Turchi, W. Huang, and Z.-K. Liu, Thermodynamics of the Cr-Ta-W System by Combining the Ab Initio and CALPHAD Methods, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2001, 25, p 419–433CrossRefGoogle Scholar
  27. 27.
    C. Wolverton, X.-Y. Yan, R. Vijayaraghavan, and V. Ozolins, Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Zn-Mg Alloys, Acta Mater., 2002, 50, p 2187–2197CrossRefGoogle Scholar
  28. 28.
    J. Vřešťál, Recent Progress in Modelling of Sigma-Phase, Arch. Metall., 2001, 46(3), p 239–247Google Scholar
  29. 29.
    J. Vřešťál, First-Principles Calculation Results in Phase Diagram Construction, J. Min. Metall. Sect. B, 2001, 37(3-4), p 29–39Google Scholar
  30. 30.
    J. Houserová, M. Friák, M. Šob, and J. Vřešťál, Ab initio Calculations of Lattice Stability of Sigma-Phase and Phase Diagram in the Cr-Fe System, Comput. Mater. Sci., 2002, 25, p 562–569CrossRefGoogle Scholar
  31. 31.
    J. Houserová, J. Vřešťál, M. Friák, and M. Šob, Phase Diagram Calculation in Co-Cr System Using Ab Initio Determined Lattice Instability of Sigma Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2002, 26, p 513–522CrossRefGoogle Scholar
  32. 32.
    J. Houserová, J. Vřešťál, and M. Šob, Phase Diagram Calculations in the Co-Mo and Fe-Mo Systems Using First-Principles Results for the Sigma Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2005, 29, p 133–139CrossRefGoogle Scholar
  33. 33.
    K. Chvátalová, J. Houserová, and M. Šob, First Principles Calculations of Energetics of Sigma Phase Formation and Thermodynamic Modelling in Cr-Fe-W System, Mater. Sci. Eng. A, 2007, 462, p 153–158CrossRefGoogle Scholar
  34. 34.
    J. Pavlů, J. Vřešťál, and M. Šob, Ab Initio Study of Formation Energy and Magnetism of Sigma Phase in Cr-Fe and Cr-Co Systems, Intermetallics, 2010, 18, p 212–220CrossRefGoogle Scholar
  35. 35.
    J. Pavlů, J. Vřešťál, and M. Šob, Thermodynamic Modeling of Laves Phases in the Cr-Hf and Cr-Ti Systems: Reassessment Using First-Principles Results, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2010, 34, p 215–221CrossRefGoogle Scholar
  36. 36.
    J. Pavlů, J. Vřešťál, X.-Q. Chen, and P. Rogl, Thermodynamic Modeling of Laves Phases in the Ta-V System: Reassessment Using First-Principles Results, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2011, 35, p 103–108CrossRefGoogle Scholar
  37. 37.
    J. Štrof, J. Pavlů, U.D. Wdowik, J. Buršík, M. Šob, and J. Vřešťál, Laves Phase in the V-Zr System Below Room Temperature: Stability Analysis Using Ab Initio Results and Phase Diagram, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2014, 44, p 62–69CrossRefGoogle Scholar
  38. 38.
    J. Pavlů, J. Vřešťál, U.D. Wdowik, and M. Šob, Modelling of Phase Equilibria in the Hf-V System Below Room Temperature, J. Min. Metall. Sect. B, 2017, 53, p 239–249CrossRefGoogle Scholar
  39. 39.
    M. Šob, A. Kroupa, J. Pavlů, J. Vřešťál, Application of Ab Initio Electronic Structure Calculations in Construction of Phase Diagrams of Metallic Systems with Complex Phases. Solid Phase Transformations II, ed. by J. Čermák and I. Stloukal, Trans Tech Publications, Switzerland, 2009, 150, p 1–28Google Scholar
  40. 40.
    Z.K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, J. Phase Equilib. Diffus., 2009, 30, p 517–534CrossRefGoogle Scholar
  41. 41.
    R. Mathieu, N. Dupin, J.-C. Crivello, K. Yaqoob, A. Breidi, J.-M. Fiorani, N. David, and J.-M. Joubert, CALPHAD Description of the Mo-Re System Focused on the Sigma Phase Modeling, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2013, 43, p 18–31CrossRefGoogle Scholar
  42. 42.
    A. Jacob, E. Povoden-Karadeniz, and E. Kozeschnik, Revised Thermodynamic Description of the Fe-Cr System Based on an Improved Sublattice Model of the σ Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2018, 60, p 16–28CrossRefGoogle Scholar
  43. 43.
    X.Q. Chen, V.T. Witusiewicz, R. Podloucky, P. Rogl, and F. Sommer, Computational and Experimental Study of Phase Stability, Cohesive Properties, Magnetism and Electronic Structure of TiMn2, Acta Mater., 2003, 51, p 1239–1247CrossRefGoogle Scholar
  44. 44.
    X.-Q. Chen and R. Podloucky, Miedema’s Model Revisited: the Parameter ϕ* for Ti, Zr, and Hf, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2006, 30, p 266–269CrossRefGoogle Scholar
  45. 45.
    C. Colinet, R. Viennois, and J.-C. Tedenac, First Principles Study of the Structural Stability of Intermetallic Compounds in the Si-Zr System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 36, p 118–126CrossRefGoogle Scholar
  46. 46.
    W. Xing, X.-Q. Chen, D. Li, Y. Li, and X. Ding, First-Principles Studies of Structural Stabilities and Enthalpies of Formation of Refractory Intermetallics: TM and TM3 (T = Ti, Zr, Hf; M = Ru, Rh, Pd, Os, Ir, Pt), Intermetallics, 2012, 28, p 16–24CrossRefGoogle Scholar
  47. 47.
    S.V. Meschel, P. Nash, Q.N. Gao, J.C. Wang, and Y. Du, The Standard Enthalpies of Formation of Some Binary Intermetallic Compounds of Lanthanide-Iron Systems by High Temperature Direct Synthesis Calorimetry, J. Alloys Compd., 2013, 578, p 465–470CrossRefGoogle Scholar
  48. 48.
    C. Colinet and J.-C. Tedenac, First Principles Calculations of the Stability of the T2 and D88 Phases in the V-Si-B System, Intermetallics, 2014, 50, p 108–116CrossRefGoogle Scholar
  49. 49.
    J.-M. Joubert, Crystal Chemistry and Calphad Modeling of the σ Phase, Prog. Mater Sci., 2008, 53, p 528–583CrossRefGoogle Scholar
  50. 50.
    M.H.F. Sluiter, Ab initio Lattice Stabilities of Some Elemental Complex Structures, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2006, 30, p 357–366CrossRefGoogle Scholar
  51. 51.
    M. Palumbo, T. Abe, C. Kocer, H. Murakami, and H. Onodera, Ab Initio and Thermodynamic Study of the Cr-Re System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2010, 34, p 495–503CrossRefGoogle Scholar
  52. 52.
    J.-C. Crivello, M. Palumbo, T. Abe, and J.-M. Joubert, Ab Initio Ternary σ-Phase Diagram: The Cr-Mo-Re System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2010, 34, p 487–494CrossRefGoogle Scholar
  53. 53.
    J.-C. Crivello, R. Souques, A. Breidi, N. Bourgeois, and J.-M. Joubert, ZenGen, A Tool to Generate Ordered Configurations for Systematic First-Principles Calculations: The Cr-Mo-Ni-Re System as a Case Study, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 51, p 233–240CrossRefGoogle Scholar
  54. 54.
    A. Breidi, S.G. Fries, M. Palumbo, and A.V. Ruban, First-Principles Modeling of Energetic and Mechanical Properties of Ni-Cr, Ni-Re and Cr-Re Random Alloys, Comput. Mater. Sci., 2016, 117, p 45–53CrossRefGoogle Scholar
  55. 55.
    A. Wang, S.L. Shang, D. Zhao, J. Wang, L. Chen, Y. Du, Z.-K. Liu, T. Xu, and S. Wang, Structural, Phonon and Thermodynamic Properties of FCC-Based Metal Nitrides from First-Principles Calculations, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 37, p 126–131CrossRefGoogle Scholar
  56. 56.
    M. Schick, B. Hallstedt, A. Glensk, B. Grabowski, T. Hickel, M. Hampl, J. Gröbner, J. Neugebauer, and Q. Schmid-Fetzer, Combined Ab Initio, Experimental, and CALPHAD Approach for an Improved Thermodynamic Evaluation of the Mg-Si System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 37, p 77–86CrossRefGoogle Scholar
  57. 57.
    A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt, and A. Watson, Modeling of Fe-W Phase Diagram Using First Principles and Phonons Calculations, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 50, p 92–104CrossRefGoogle Scholar
  58. 58.
    B. Kaplan, D. Korbmacher, A. Blomqvist, and B. Grabowski, Finite Temperature Ab Initio Calculated Thermodynamic Properties of Orthorhombic Cr3C2, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2016, 53, p 72–77CrossRefGoogle Scholar
  59. 59.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1991, 15, p 317–425CrossRefGoogle Scholar
  60. 60.
    L. Kaufman, The Lattice Stability of Metals—I. Titanium and Zirconium, Acta Metall., 1959, 7, p 575–587CrossRefGoogle Scholar
  61. 61.
    W. Chase, I. Ansara, A. Dinsdale, G. Eriksson, G. Grimvall, L. Höglund, and H. Yokokawa, Workshop on Thermodynamic Models and Data for Pure Elements and Other Endmembers of Solutions: Schloβ Ringberg, Feb. 26-March 3, 1995, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1995, 19, p 437–447Google Scholar
  62. 62.
    B. Sundman and F. Aldinger, The Ringberg Workshop 1995 on Unary Data for Elements and Other End-Members of Solutions, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1995, 19, p 433–436CrossRefGoogle Scholar
  63. 63.
    Q. Chen and B. Sundman, Modeling of Thermodynamic Properties for BCC, FCC, Liquid, and Amorphous Iron, J. Phase Equilib., 2001, 22, p 631–644CrossRefGoogle Scholar
  64. 64.
    J. Vřešťál, J. Štrof, and J. Pavlů, Extension of SGTE Data for Pure Elements to Zero Kelvin Temperature—A Case Study, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 37, p 37–48CrossRefGoogle Scholar
  65. 65.
    Q. Chen and B. Sundman, Calculation of Debye Temperature for Crystalline Structures—A Case Study on Ti, Zr, and Hf, Acta Mater., 2001, 49, p 947–961CrossRefGoogle Scholar
  66. 66.
    C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996zbMATHGoogle Scholar
  67. 67.
    G. Grimvall, Thermophysical Properties of Materials, Elsevier North-Holland, Amsterdam, 1999Google Scholar
  68. 68.
    J. Pavlů, P. Řehák, J. Vřešťál, and M. Šob, Combined Quantum-Mechanical and Calphad Approach to Description of Heat Capacity of Pure Elements Below Room Temperature, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 51, p 161–171CrossRefGoogle Scholar
  69. 69.
    S. Bigdeli, H. Mao, and M. Selleby, On the Third-Generation Calphad Databases: An Updated Description of Mn, Phys. Status Solidi B, 2015, 252(10), p 1–10CrossRefGoogle Scholar
  70. 70.
    S. Bigdeli, H. Ehteshami, Q. Chen, and M. Selleby, New Description of Metastable HCP Phase for Unaries Fe and Mn: Coupling Between First-Principles Calculations and Calphad Modelling, Phys. Status Solidi B, 2016, 253(9), p 1830–1836ADSCrossRefGoogle Scholar
  71. 71.
    Z. Li, S. Bigdeli, H. Mao, and M. Selleby, Thermodynamic Evaluation of Pure Co for the Third Generation of Thermodynamic Databases, Phys. Status Solidi B, 2017, 254(2), p 1600231ADSCrossRefGoogle Scholar
  72. 72.
    Z. Li, H. Mao, and M. Selleby, A New Thermodynamic Description of Stable Cr-Carbides for the Third Generation of Thermodynamic Database, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2017, 59, p 107–111CrossRefGoogle Scholar
  73. 73.
    A.V. Khvan, A.T. Dinsdale, I.A. Uspenskaya, M. Zhilin, T. Babkina, and A.M. Phiri, A Thermodynamic Description of Data for Pure Pb from 0 K Using the Expanded Einstein Model for the Solid and the Two State Model for the Liquid Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2018, 60, p 144–155CrossRefGoogle Scholar
  74. 74.
    S. Bigdeli, H. Mao, and M. Selleby, [P63] On the 3rd Generation Calphad Databases: Updated Description of Mn and Reassessment of Binary Fe-Mn, Conference Abstract, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 51, p 394CrossRefGoogle Scholar
  75. 75.
    Y. Jiang, S. Zomorodpoosh, I. Roslyakova, and L. Zhanga, Thermodynamic Re-Assessment of Binary Cr-Nb System Down to 0 K, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2018, 62, p 109–118CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Institute of Physics of MaterialsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Central European Institute of TechnologyCEITEC MU, Masaryk UniversityBrnoCzech Republic
  3. 3.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations