Advertisement

Experimental Liquidus Studies of the Pb-Fe-Ca-O System in Air

  • M. ShevchenkoEmail author
  • E. Jak
Article
  • 10 Downloads

Abstract

Phase equilibria of the Pb-Fe-Ca-O system have been investigated at 1043-1653 K (770-1380 °C) for oxide liquid in equilibrium with air and solid oxide phases: (a) hematite Fe2O3; (b) spinel (Fe,Ca)Fe2O4; (c) calcium ferrites CaFe4O7, CaFe2O4, Ca2Fe2O5; (d) lead ferrites (magnetoplumbite (Pb,Ca)O·12FeO1.5, plumboferrite (Pb,Ca)O·(5 + x)FeO1.5, 1:1 lead ferrite (Pb,Ca)O·(1 ± x)FeO1.5); (e) lead oxide PbO (massicot); (f) calcium plumbate Ca2PbO4; and (g) lime CaO. High-temperature equilibration on inert metal (platinum, gold) substrates, followed by quenching and direct measurement of Pb, Fe and Ca concentrations in the phases with the electron probe x-ray microanalysis (EPMA) has been used to accurately characterize the system in equilibrium with air. All results are projected onto the PbO-“FeO1.5”-CaO plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with air.

Keywords

iron lead lime phase diagrams slags 

Notes

Acknowledgments

The authors would like to thank Nyrstar (Australia), Outotec Pty Ltd (Australia), Aurubis AG (Germany), Umicore NV (Belgium), and Kazzinc Ltd, Glencore (Kazakhstan), and Australian Research Council Linkage Project LP150100783 for their financial support for this research. The authors are grateful to Prof. Peter C. Hayes (UQ) for valuable comments and suggestions, to Ms. Suping Huang for assistance with conducting experiments, and to the staff of the University of Queensland Centre for Microanalysis and Microscopy (CMM) for their support in maintenance and operation of scanning and electron microprobe facilities in the Centre.

References

  1. 1.
    E. Jak, Phase Equilibria to Characterise Lead/Zinc Smelting Slags and Sinters (PbO-ZnO-CaO-SiO 2 -Fe 2 O 3 -FeO), Ph.D Thesis (University of Queensland, 1995)Google Scholar
  2. 2.
    E. Jak, S.A. Decterov, P. Wu, P.C. Hayes, and A.D. Pelton, Thermodynamic Optimisation of the Systems PbO-SiO2, PbO-ZnO, ZnO-SiO2 and PbO-ZnO-SiO2, Metall. Mater. Trans. B, 1997, 28B, p 1011-1018CrossRefGoogle Scholar
  3. 3.
    E. Jak, S.A. Decterov, P.C. Hayes, and A.D. Pelton, Thermodynamic Optimisation of the Systems CaO-Pb-O and PbO-CaO-SiO2, Can. Metall. Q., 1998, 37(1), p 41-47CrossRefGoogle Scholar
  4. 4.
    E. Jak, N. Liu, and P.C. Hayes, Experimental Study of Phase Equilibria in the Systems PbOx-CaO and PbOx-CaO-SiO2, Metall. Mater. Trans. B, 1998, 29B(3), p 541-553ADSCrossRefGoogle Scholar
  5. 5.
    E. Jak, B. Zhao, P.C. Hayes, S.A. Decterov, and A.D. Pelton, Coupled Experimental and Thermodynamic Modelling Studies of the System PbO-ZnO-FeO-Fe2O3-CaO-SiO2-Al2O3 for Lead and Zinc Smelting, Zinc and Lead Processing, in ed. by J.E. Dutrizac, J.A. Gonzalez, G.L. Bolton, P. Hancock 1998 of Conference, Met. Soc. CIMM, pp. 313–333Google Scholar
  6. 6.
    E. Jak, B. Zhao, N. Liu, and P.C. Hayes, Experimental Study of Phase Equilibria in the System PbO-ZnO-SiO2, Metall. Mater. Trans. B, 1999, 30B(1), p 21-27CrossRefGoogle Scholar
  7. 7.
    E. Jak and P.C. Hayes, Experimental Study of Phase Equilibria in the PbO-ZnO-”Fe2O3”-CaO-SiO2 System in Air for High Lead Smelting Slags (CaO/SiO2 = 0.35 and PbO/(CaO + SiO2) = 5.0 by Weight), Metall. Mater. Trans. B, 2002, 33B(6), p 817-825CrossRefGoogle Scholar
  8. 8.
    E. Jak and P.C. Hayes, Experimental Liquidus in the PbO-ZnO-”Fe2O3”-(CaO + SiO2) System in Air, with CaO/SiO2 = 0.35 and PbO/(CaO + SiO2) = 3.2, Metall. Mater. Trans. B, 2002, 33B(6), p 851-863CrossRefGoogle Scholar
  9. 9.
    E. Jak and P.C. Hayes, The Effect of the CaO/SiO2 Ratio on the Phase Equilibria in the ZnO-”Fe2O3”-(PbO + CaO + SiO2) System in Air: CaO/SiO2 = 0.1, PbO/(CaO + SiO2) = 6.2, and CaO/SiO2 = 0.6, PbO/(CaO + SiO2) = 4.3, Metall. Mater. Trans. B, 2003, 34B(4), p 369-382CrossRefGoogle Scholar
  10. 10.
    E. Jak, B. Zhao, I. Harvey, and P.C. Hayes, Experimental Study of Phase Equilibria in the PbO-ZnO-”Fe2O3”-(CaO + SiO2) System in Air for the Lead and Zinc Blast Furnace Sinters (CaO/SiO2 Weight Ratio of 0.933 and PbO/(CaO + SiO2) Ratios of 2.0 and 3.2), Metall. Mater. Trans. B, 2003, 34B(4), p 383-397CrossRefGoogle Scholar
  11. 11.
    E. Jak, P.C. Hayes, and H.-G. Lee, Improved Methodologies for the Determination of High Temperature Phase Equilibria, Met. Mater., 1995, 1(1), p 1-8Google Scholar
  12. 12.
    M. Kudo, E. Jak, P.C. Hayes, K. Yamaguchi, and Y. Takeda, Lead Solubility in FeOx-CaO-SiO2 Slags at Iron Saturation, Metall. Mater. Trans. B, 2000, 31B(1), p 15-24CrossRefGoogle Scholar
  13. 13.
    E. Jak, S.A. Decterov, P.C. Hayes, and A.D. Pelton, Thermodynamic Modelling of the System PbO-ZnO-FeO-Fe2O3-CaO-SiO2 for Zinc/Lead Smelting, in Proceedings of the 5th International Conference on Molten Slags, Fluxes and Salts Iron and Steel Society (AIME, Sydney, Australia, 1997), pp. 621–628Google Scholar
  14. 14.
    E. Jak, S.A. Decterov, B. Zhao, A.D. Pelton, and P.C. Hayes, Coupled Experimental and Thermodynamic Modelling Studies for Metallurgical Smelting and Coal Combustion Slag Systems, Metall. Mater. Trans. B, 2000, 31B(4), p 621-630CrossRefGoogle Scholar
  15. 15.
    S.A. Decterov, I.-H. Jung, E. Jak, Y.-B. Kang, P. Hayes, and A.D. Pelton, Thermodynamic Modeling of the Al2O3-CaO-CoO-CrO-Cr2O3-FeO-Fe2O3-MgO-MnO-NiO-SiO2-S System and Applications in Ferrous Process Metallurgy, in ed. by C. Pistorius SAIMM Symposium Series S36 (VII International Conference on Molten Slags, Fluxes & Salts) (The South African Institute of Mining and Metallurgy, Johannesburg, Republic of South Africa, 2004), pp. 839–850Google Scholar
  16. 16.
    FactSage, Ecole Polytechnique, Montréal, http://www.factsage.com/, 2008
  17. 17.
    E. Jak, Integrated Experimental and Thermodynamic Modelling Research Methodology for Metallurgical Slags with Examples in the Copper Production Field 9th International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), 2012 of Conference (Beijing, China), The Chinese Society for Metals, W077Google Scholar
  18. 18.
    K.T. Jacob, G. Rajitha, and G.M. Kale, Thermodynamic Properties of Pb2PtO4 and PbPt2O4 and Phase Equilibria in the System Pb-Pt-O, J. Alloys Compd., 2009, 481(1–2), p 228-232CrossRefGoogle Scholar
  19. 19.
    H. Fukuyama, K. Shimizu, and K. Nagata, Determination of Gibbs Energies of Formation of the Ca-Pt-O Compounds from Electromotive Force Method Using CaF2 as Solid Electrolyte, High Temp. Mater. Process., 2004, 23(5–6), p 335-341ADSGoogle Scholar
  20. 20.
    M. Shevchenko and E. Jak, Experimental Liquidus Study of the Binary PbO-CaO and Ternary PbO-CaO-SiO 2 Systems, Personal communication, PYROSEARCH (The University of Queensland, 2018)Google Scholar
  21. 21.
    S. Nikolic, P.C. Hayes, and E. Jak, Experimental Techniques for Investigating Calcium Ferrite Slags at Metallic Copper Saturation and Application to the Systems “Cu2O”-”Fe2O3” and “Cu2O”-CaO at Metallic Copper Saturation, Metall. Mater. Trans. B, 2009, 40B(6), p 892-899ADSCrossRefGoogle Scholar
  22. 22.
    M. Shevchenko, T. Hidayat, P. Hayes, and E. Jak, Liquidus of “FeO”-SiO2-PbO Slags in Equilibrium with Air and with Metallic Lead, Molten 2016, in 10th International Conference on Molten Slags, Fluxes and Salts, 2016 of Conference (Seattle, Washington, USA), pp. 1221–1228Google Scholar
  23. 23.
    M. Shevchenko and E. Jak, Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials, Metall. Mater. Trans. B, 2017, 48, p 2970-2983CrossRefGoogle Scholar
  24. 24.
    M. Shevchenko and E. Jak, Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb, Metall. Mater. Trans. B, 2017, 49(1), p 159-180CrossRefGoogle Scholar
  25. 25.
    J. Hadermann, A.M. Abakumov, I.V. Nikolaev, E.V. Antipov, and G. Van Tendeloo, Local Structure of Perovskite-Based “Pb2Fe2O5”, Solid State Sci., 2008, 10(4), p 382-389ADSCrossRefGoogle Scholar
  26. 26.
    D. Batuk, J. Hadermann, A. Abakumov, T. Vranken, A. Hardy, M. Van Bael, and G. Van Tendeloo, Layered Perovskite-Like Pb2Fe2O5 Structure as a Parent Matrix for the Nucleation and Growth of Crystallographic Shear Planes, Inorg. Chem., 2011, 50(11), p 4978-4986CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Pyrometallurgy Innovation Centre (PYROSEARCH)The University of QueenslandBrisbaneAustralia

Personalised recommendations