Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 2, pp 138–147 | Cite as

Experimental Investigations on the Quaternary Interdiffusion Coefficients, Young’s Modulus and Hardness in bcc Ti-Nb-Ta-Zr Quaternary Alloys

  • Weimin ChenEmail author
  • Lijun Zhang


Accurate interdiffusion coefficient, Young’s modulus and hardness are essential for precisely controlling the production of a homogeneous bio-metallic alloys with excellent properties. In this work, we utilized a combinational approach by combining the advanced diffusion multiple technique and the pragmatic numerical inverse method to efficiently determine the composition–dependent interdiffusion coefficient matrices in bcc quaternary Ti-Nb-Ta-Zr alloys at 1373 K. Moreover, the composition-dependent Young’s modulus and hardness of bcc Ti-Nb-Ta-Zr alloys were obtained by means of the nanoindentation technique.


diffusion multiple hardness interdiffusion coefficient pragmatic numerical inverse method Ti-Nb-Ta-Zr alloys Young’s modulus 



The financial support from the National Natural Science Foundation for Youth of China (Grant No. 51701083) and the National Natural Science Foundation of China (Grant No. 51474239) is acknowledged. Weimin Chen acknowledges the financial support from the Guangdong Provincial Natural Science Foundation for Doctoral Research Project (Grant No. 2017A030310519), the Fundamental Research Funds for the Central Universities (Grant No. 21617340) and the Scientific Research Funds for the Talents the Innovation Foundation of Jinan University. Lijun Zhang acknowledges the Huxiang Youth Talent Plan released by Hunan Province, China.


  1. 1.
    C. Marker, S.-L. Shang, J.-C. Zhao, and Z.-K. Liu, Thermodynamic Description of the Ti-Mo–Nb-Ta-Zr System and its Implications for Phase Stability of Ti Bio-implant Materials, CALPHAD, 2018, 61, p 72-84CrossRefGoogle Scholar
  2. 2.
    X.D. Zhang, L.B. Liu, J.-C. Zhao, J.L. Wang, F. Zheng, and Z.P. Jin, High-efficiency Combinatorial Approach as an Effective Tool for Accelerating Metallic Biomaterials Research and Discovery, Mater. Sci. Eng. C, 2014, 39, p 273-280CrossRefGoogle Scholar
  3. 3.
    C. Marker, S.-L. Shang, J.-C. Zhao, and Z.-K. Liu, Elastic Knowledge Base of bcc Ti Alloys from First–principles Calculations and CALPHAD-based Modeling, Comput. Mater. Sci., 2017, 140, p 121-139CrossRefGoogle Scholar
  4. 4.
    C. Marker, S.-L. Shang, J.-C. Zhao, and Z.-K. Liu, Effects of Alloying Elements on the Elastic Properties of bcc Ti-X Alloys from First-principles Calculations, Comput. Mater. Sci., 2018, 142, p 215-226CrossRefGoogle Scholar
  5. 5.
    W. Chen and L. Zhang, High-throughput Determination of Interdiffusion Coefficients for Co-Cr-Fe-Mn-Ni High-entropy Alloys, J. Phase Equilib. Diffus., 2017, 38, p 457-465CrossRefGoogle Scholar
  6. 6.
    W. Chen, Q. Li, and L. Zhang, A Novel Approach to Eliminate the Effect of External Stress on Interdiffusivity Measurement, Materials, 2017, 10, p 961ADSCrossRefGoogle Scholar
  7. 7.
    W. Chen, L. Zhang, W. Li, and Y. Du, Experimental Measurements of the Interdiffusivities in fcc Co-rich Co-Ti, Co-W and Co-Ti-W Systems, Int. J. Refract. Met. Hard Mater., 2018, 71, p 153-159CrossRefGoogle Scholar
  8. 8.
    W. Chen, Interdiffusion and Atomic Mobility in bcc Ti-rich Ti-Nb-Zr System, CALPHAD, 2018, 60, p 98-105CrossRefGoogle Scholar
  9. 9.
    W. Chen, W. Li, and Y. Du, Investigations on Diffusion Behaviors in Ti-rich Ti-Nb-Zr–Cr system: Experimental Measurement and CALPHAD Modeling, CALPHAD, 2018, 62, p 223-231CrossRefGoogle Scholar
  10. 10.
    J. Zhong, W. Chen, and L. Zhang, HitDIC: A Free-accessible Code for High-throughput Determination of Interdiffusion Coefficients in Single Solution Phase, CALPHAD, 2018, 60, p 177-190CrossRefGoogle Scholar
  11. 11.
    M. Niinomi, T. Narushima, and M. Nakai, Advances in Metallic Biomaterials-Tissues, Materials and Biological, Springer Ltd., Berlin, 2015CrossRefGoogle Scholar
  12. 12.
    W. Chen, L. Zhang, Y. Du, C. Tang, and B. Huang, A Pragmatic Method to Determine the Composition–dependent Interdiffusivities in Ternary Systems by Using a Single Diffusion Couple, Scripta Mater., 2014, 90-91, p 53-56CrossRefGoogle Scholar
  13. 13.
    W. Chen, J. Zhong, and L. Zhang, An Augmented Numerical Inverse Method for Determining the Composition–dependent Interdiffusivities in Alloy Systems by Using a Single Diffusion Couple, MRS Commun., 2016, 6, p 295-300CrossRefGoogle Scholar
  14. 14.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583ADSCrossRefGoogle Scholar
  15. 15.
    J.R. Manning, Diffusion and the Kirkendall Shift in Binary Alloys, Acta Metall., 1967, 15, p 817-826CrossRefGoogle Scholar
  16. 16.
    W. Chen, L. Zhang, Y. Du, and B. Huang, Viscosity and Diffusivity in Melts: from Unary to Multicomponent Systems, Philos. Mag., 2014, 94, p 1552-1577ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Dayananda, An Analysis of Concentration Profiles of Fluxes, Diffusion Depths, and Zero–flux Planes in Multicomponent Diffusion, Metall. Trans. A, 1983, 14, p 1851-1858CrossRefGoogle Scholar
  18. 18.
    A. Ben Abdellah, J.G. Gasser, K. Bouziane, B. Grosdidier, and M. Busaidi, Experimental Procedure to Determine the Interdiffusion Coefficient of Miscibility Gap Liquid Alloys: Case of GaPb System, Phys. Rev. B, 2007, 76, p 174203ADSCrossRefGoogle Scholar
  19. 19.
    J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, and E. Audubert, Volume Interdiffusion Coefficient and Uncertainty Assessment for Polycrystalline Materials. diffusion–, 2012, 17, p 1-39.Google Scholar
  20. 20.
    S. Deng, W. Chen, J. Zhong, L. Zhang, Y. Du, and L. Chen, Diffusion Study in Bcc_A2 Fe–Mn–Si System: Experimental Measurement and CALPHAD Assessment, CALPHAD, 2017, 56, p 230-240CrossRefGoogle Scholar
  21. 21.
    J. Zhong and L. Zhang, HitDIC: A Free-Accessible Code for High-Throughput Determination of Interdiffusion Coefficients in Single Solution Phase. Assessed 20 Nov 2018.

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Institute of Advanced Wear and Corrosion Resistant and Functional MaterialsJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations