Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 1, pp 21–33 | Cite as

The Thermodynamic Assessment of the Co-Sn System

  • V. Jedličková
  • A. Zemanová
  • A. KroupaEmail author
Article
  • 53 Downloads

Abstract

A thermodynamic reassessment of the Co-Sn system was carried out by using the CALPHAD method. The need for a reassessment stemmed from the existence of new measurements of the enthalpy of mixing by Yakymovych et al. (J Chem Thermodyn 74:269–285, 2014.  https://doi.org/10.1016/j.jct.2014.02.013) and the necessity to remodel some of the intermetallic phases in the system to make the dataset consistent with existing specialized databases, e.g. the database for high temperature lead-free soldering materials. The obtained assessment agrees well with existing experimental phase diagram data and the new thermodynamic data from Yakymovych et al. (2014).

Keywords

CALPHAD method Co-Sn system new assessment phase diagram thermodynamic database 

Notes

Acknowledgments

This work was supported by the Czech Science Foundation in the scope of the Projects 17-12844S and 18-25660J.

References

  1. 1.
    A. Yakymovych, S. Fürtauer, A. Elmahfoudi, H. Ipser, and H. Flandorfer, Enthalpy of Mixing of Liquid Co-Sn Alloys, J. Chem. Thermodyn., 2014, 74, p 269-285.  https://doi.org/10.1016/j.jct.2014.02.013 CrossRefGoogle Scholar
  2. 2.
    M. Bulanova, N. Kolchugina, T. Zienert, N. Heiden, Co-Sn (Cobalt-Tin Binary Phase Diagram Evaluation, in MSI Eureka, ed. by G. Effenberg (MSI, Materials Science International, Stuttgart, 2015), Document ID: 20.16656.1.3Google Scholar
  3. 3.
    L. Liu, C. Andersson, and J. Liu, Thermodynamic Assessment of the Sn-Co Lead-Free Solder System, J. Electron. Mater., 2004, 33(9), p 935-939.  https://doi.org/10.1007/s11664-004-0019-8 ADSCrossRefGoogle Scholar
  4. 4.
    M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida, A Thermodynamic Assessment of the Co-Sn System, Calphad, 2004, 28(2), p 213-220.  https://doi.org/10.1016/j.calphad.2004.08.001 CrossRefGoogle Scholar
  5. 5.
    G.P. Vassilev and K.I. Lilova, Contribution to the Thermodynamics of the Co-Sn System, Arch. Metall. Mater., 2006, 51(3), p 365-375Google Scholar
  6. 6.
    O. Nial, X-ray Examination of Cobalt-Tin Alloys and a Comparison of the System Co-Sn with Fe-Sn and Ni-Sn, Z. Anorg. Allg. Chem., 1938, 238(2–3), p 287-296.  https://doi.org/10.1002/zaac.19382380213 CrossRefGoogle Scholar
  7. 7.
    L.A. Panteleimonov, G.F. Portnova, and O.P. Nesterova, Cobalt-Tin System, Moscow Univ. Chem. Bull. (Engl. Transl.), 1971, 26(1), p 79-80Google Scholar
  8. 8.
    K. Ishida and T. Nishizawa, The Co-Sn (Cobalt-Tin) System, J. Phase Equilib., 1991, 12(1), p 88-93.  https://doi.org/10.1007/BF02663681 CrossRefGoogle Scholar
  9. 9.
    T.B. Massalski, Ed., Binary Alloy Phase Diagrams, 2nd ed., ASM Int, Metals Park, 1996Google Scholar
  10. 10.
    A. Lang and W. Jeitschko, Two New Phases in the System Cobalt-Tin: The Crystal Structures of α- and β CoSn3, Z. Metallkd., 1996, 87(10), p 759-764Google Scholar
  11. 11.
    G.P. Vassilev, K.I. Lilova, and J.C. Gachon, Calorimetric and Phase Diagram Studies of the Co-Sn System, Intermetallics, 2007, 15(9), p 1156-1162.  https://doi.org/10.1016/j.intermet.2007.02.006 CrossRefGoogle Scholar
  12. 12.
    K. Lewkonja, About the Alloys of Cobalt with Tin, Antimony, Lead, Bismuth, Thallium, Zinc, Cadmium, Chromium and Silicon, Z. Anorg. Allg. Chem., 1908, 59, p 294-304Google Scholar
  13. 13.
    S.F. Zemczuzny and S.W. Belynsky, The Co-Sn System, Z. Anorg. Allg. Chem., 1908, 59, p 364-370CrossRefGoogle Scholar
  14. 14.
    U. Haschimoto, The Effect of Various Elements on the Alpha/Beta Allotropic Transformation Point of Cobalt, Nippon Kinzoku Gakkaishi, 1938, 2(2), p 67-77Google Scholar
  15. 15.
    N.M. Matveyeva, S.V. Nikitina, and S.B. Zezin, Investigation of the Quasi Binary Systems MnSn2-FeSn2, MnSn2-CoSn2 and FeSn2-CoSn2, Izv. Akad. Nauk SSSR Met., 1968, 5, p 194-197Google Scholar
  16. 16.
    J.B. Darby, Jr, and D.B. Jugle, Solubility of Several First-Long-Period Transition Elements in Liquid Tin, Trans. Metall. Soc. AIME, 1969, 245, p 2515-2518Google Scholar
  17. 17.
    H. Cömert and J.N. Pratt, The Thermodynamic Properties of Solid Cobalt-Tin Alloys, Thermochim. Acta, 1985, 84, p 273-286CrossRefGoogle Scholar
  18. 18.
    H. Cömert and J.N. Pratt, Constitutional Studies of Cobalt-Tin Alloys, Metall. Trans. A, 1992, 23, p 2401-2407CrossRefGoogle Scholar
  19. 19.
    F. Koerber, The Relations Between Heat of Formation, Structure and Properties of Technically Important Alloys, Stahl Eisen, 1936, 56(48), p 1401-1411Google Scholar
  20. 20.
    F. Koerber and W. Oelsen, Thermochemistry of Alloys III, Heat of Formation of the Fe-Sb, Co-Sb, Ni-Sb, Co-Sn, Ni-Sn, Cu-Sn and Cu-Zn Binary Alloys in the Liquid State, Mitt. K.-W.-Inst. Eisenforschung, 1937, 19(15), p 209-219Google Scholar
  21. 21.
    V.N. Eremenko, G.M. Lukashenko, and V.L. Pritula, Thermodynamic Properties of Liquid Alloys of Tin with Iron, Cobalt and Nickel, Zh. Fiz. Khim., 1971, 45(8), p 1993-1995Google Scholar
  22. 22.
    G.M. Lukashenko, Investigation in Thermodynamic Region of the 3d-Transition Metals Alloys, Doctor Thesis, Kiev Univ. (1976)Google Scholar
  23. 23.
    R. Lück, J. Tomiska, and B. Predel, Determination of the Mixing Enthalpy of Liquid Cobalt-Tin Alloys by High-Temperature Calorimetry, Z. Metallkd., 1991, 82(12), p 944-949Google Scholar
  24. 24.
    Y.O. Esin, M.G. Valishev, V.M. Baev, and P.V. Geld, Energies of Interatomic Interactions and Ordering in the Liquid Alloys of Cobalt with Tin, Zh. Fiz. Khim., 1977, 51(10), p 2524-2528Google Scholar
  25. 25.
    M.-C. Heuzey and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties of Liquid Tin Solutions, Metall. Mater. Trans. B, 1996, 27B(5), p 810-828.  https://doi.org/10.1007/BF02915611 ADSCrossRefGoogle Scholar
  26. 26.
    A. Yassin and R. Castanet, Enthalpies of Dissolution of Elements in Liquid Tin: II. Transition, Alkali and Alkaline-Earth Metals, J. Alloys Compd., 2001, 314, p 160-166.  https://doi.org/10.1016/S0925-8388(00)01228-7 CrossRefGoogle Scholar
  27. 27.
    B. Predel and W. Vogelbein, Formation Enthalpies of Solid Alloys of the Binary Systems of Iron, Cobalt, and Nickel with Germanium and Tin, Thermochim. Acta, 1979, 30, p 201-215CrossRefGoogle Scholar
  28. 28.
    A.N. Torgersen, H. Bros, R. Castanet, and A. Kjekshus, Enthalpy of Formation for CoGe, CoSn, Ni3.14Sn4, Ni3.50Sn4, AuCo1.66Sn4, AuNi2Sn4 and Au1.17Pt1.82Sn4, J. Alloys Compd., 2000, 307, p 167-173CrossRefGoogle Scholar
  29. 29.
    A.K. Niessen and A.R. Miedema, Enthalpies of Formation of Liquid and Solid Binary Alloys Based on 3d Metals, Physica B, 1988, 151, p 401-432CrossRefGoogle Scholar
  30. 30.
    A. Dinsdale, A. Kroupa, A. Watson, J. Vřešťál, A. Zemanová, and P. Brož, Handbook of High-Temperature Lead-Free Solders: Atlas of Phase Diagrams, Volume 1, COST Office, Brussels, 2012, ISBN 978-80-905363-1-9Google Scholar
  31. 31.
    A.T. Dinsdale, SGTE Unary Database, Version 4.4, www.sgte.org. Accessed 2004
  32. 32.
    O. Redlich and A. Kister, Thermodynamics of Nonelectrolyte Solutions—X-Y-T Relations in a Binary System, Ind. Eng. Chem., 1948, 40, p 341-345CrossRefGoogle Scholar
  33. 33.
    N. Saunders and A.P. Miodownik, Calphad (A Comprehensive Guide), Pergamon Press, Oxford, 1998Google Scholar
  34. 34.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, New York, 2017zbMATHGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic
  2. 2.Institute of Physics of Materials, CASBrnoCzech Republic

Personalised recommendations