Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 1, pp 10–20 | Cite as

Thermodynamic Modeling of Oxidation of Tin Nanoparticles

  • Jindřich LeitnerEmail author
  • David Sedmidubský


A thorough thermodynamic analysis of oxidation of tin nanoparticles was performed. Solid tin oxides SnO2, Sn3O4 and SnO were considered according to the bulk phase diagram and a number of experimental results on tin nanostructures oxidation were taken into account in the assessment. Two equilibrium models with different spatial configuration, namely two single-component particles and core–shell model were explored. The surface energies for solid SnO and Sn3O4 were obtained on the basis of DFT calculations while the interfacial energies at SnO2(s)/Sn(l) and Sn3O4(s)/Sn(l) interfaces were assessed using a broken bond approximation. The opposite influence of nanosizing on stability of SnO2 and SnO/Sn3O4 oxides is demonstrated. It is due to the surface contribution which is higher for SnO2(s) than Sn(l) while lower for SnO(s) and Sn3O4(s) compared to Sn(l). This situation can explain some experimental findings during oxidation of Sn nanoparticles, namely an increased stability of SnO(s) and Sn3O4(s) with respect to both liquid tin and solid tin dioxide.


surface energy thermodynamic modeling tin nanoparticles tin oxides 



This work was supported by Czech Science Foundation, Grant No. 17-13161S.


  1. 1.
    C.C. Yang and Y.-W. Mai, Thermodynamics at the Nanoscale: A New Approach to the Investigation of Unique Physicochemical Properties of Nanomaterials, Mater. Sci. Eng. R Rep., 2014, 79, p 1-40CrossRefGoogle Scholar
  2. 2.
    W. Qi, Nanoscopic Thermodynamics, Acc. Chem. Res., 2016, 49, p 1587-1595CrossRefGoogle Scholar
  3. 3.
    J. Leitner and D. Sedmidubský, Thermodynamic Equilibria in Systems with Nanoparticles, Thermal Physics and Thermal Analysis, Springer, Berlin, 2017, p 385-402CrossRefGoogle Scholar
  4. 4.
    A. Navrotsky, C. Ma, K. Lilova, and N. Birkner, Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria, Science, 2010, 330, p 199-201ADSCrossRefGoogle Scholar
  5. 5.
    A. Navrotsky, Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems, ChemPhysChem, 2011, 12, p 2207-2215CrossRefGoogle Scholar
  6. 6.
    N. Birkner and A. Navrotsky, Thermodynamics of Manganese Oxides: Effects of Particle Size and Hydration on Oxidation-Reduction Equilibria Among Hausmannite, Bixbyite, and Pyrolusite, Am. Miner., 2012, 97, p 1291-1298ADSCrossRefGoogle Scholar
  7. 7.
    S. Cahen, N. David, J. Fiorani, A. Maıtre, and M. Vilasi, Thermodynamic Modelling of the O-Sn System, Thermochim. Acta, 2003, 403, p 275-285CrossRefGoogle Scholar
  8. 8.
    V. Gurevich, K. Gavrichev, V. Polyakov, R. Clayton, S. Mineev, G. Hu, V. Gorbunov, and L. Golushina, Low-Temperature Heat Capacity of Tin Dioxide: New Standard Data on Thermodynamic Functions, Thermochim. Acta, 2004, 421, p 179-184CrossRefGoogle Scholar
  9. 9.
    T.A. White, M.S. Moreno, and P.A. Midgley, Structure Determination of the Intermediate Tin Oxide Sn3O4 by Precession Electron Diffraction, Z. Kristall., 2010, 225, p 56-66CrossRefGoogle Scholar
  10. 10.
    C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, and A. Pelton, FactSage Thermochemical Software and Databases—Recent Developments, Calphad, 2009, 33, p 295-311CrossRefGoogle Scholar
  11. 11.
    C.M. Campo, J.E. Rodríguez, and A.E. Ramírez, Thermal Behaviour of Romarchite Phase SnO in Different Atmospheres: A Hypothesis About the Phase Transformation, Heliyon, 2016, 2, p e00112CrossRefGoogle Scholar
  12. 12.
    H. Giefers, F. Porsch, and G. Wortmann, Kinetics of the Disproportionation of SnO, Solid State Ion., 2005, 176, p 199-207CrossRefGoogle Scholar
  13. 13.
    J. Kim, M.Y. Huh, and J.P. Ahn, Effect of particle size on the oxidation behavior of nanophase tin synthesized by inert gas condensation, Solid State Phenomena, 2007, Trans Tech Publications, pp 9–12Google Scholar
  14. 14.
    A. Seko, A. Togo, F. Oba, and I. Tanaka, Structure and Stability of a Homologous Series of Tin Oxides, Phys. Rev. Lett., 2008, 100, p 045702ADSCrossRefGoogle Scholar
  15. 15.
    P. Sarker and M.N. Huda, Understanding the Thermodynamic Pathways of SnO-to-SnOx Phase Transition, Comput. Mater. Sci., 2016, 111, p 359-365CrossRefGoogle Scholar
  16. 16.
    M.-Y. Huh, S.-H. Kim, J.-P. Ahn, J.-K. Park, and B.-K. Kim, Oxidation of Nanophase tin Particles, Nanostruct. Mater., 1999, 11, p 211-220CrossRefGoogle Scholar
  17. 17.
    P. Song and D. Wen, Experimental Investigation of the Oxidation of Tin Nanoparticles, J. Phys. Chem. C, 2009, 113, p 13470-13476CrossRefGoogle Scholar
  18. 18.
    A. Kolmakov, Y. Zhang, and M. Moskovits, Topotactic Thermal Oxidation of Sn Nanowires: Intermediate Suboxides and Core–Shell Metastable Structures, Nano Lett., 2003, 3, p 1125-1129ADSCrossRefGoogle Scholar
  19. 19.
    T. Mima, H. Takeuchi, S. Arai, K. Kishita, K. Kuroda, and H. Saka, In Situ Observation of Oxidation of Liquid Droplets of Tin and Melting Behavior of a Tin Particle Covered with a Tin Oxide Layer, Microsc. Res. Tech., 2009, 72, p 223-231CrossRefGoogle Scholar
  20. 20.
    E. Sutter, F. Ivars-Barcelo, and P. Sutter, Size-Dependent Room Temperature Oxidation of Tin Particles, Part. Part. Syst. Charact., 2014, 31, p 879-885CrossRefGoogle Scholar
  21. 21.
    S. Lai, J. Guo, V. Petrova, G. Ramanath, and L. Allen, Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Phys. Rev. Lett., 1996, 77, p 99–102ADSCrossRefGoogle Scholar
  22. 22.
    H. Jiang, K.-S. Moon, H. Dong, F. Hua, and C. Wong, Size-Dependent Melting Properties of Tin Nanoparticles, Chem. Phys. Lett., 2006, 429, p 492-496ADSCrossRefGoogle Scholar
  23. 23.
    G. Guisbiers, Review on the Analytical Models Describing Melting at the Nanoscale, J. Nanosci. Lett., 2012, 2, p 8CrossRefGoogle Scholar
  24. 24.
    A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425CrossRefGoogle Scholar
  25. 25.
    M.E. Cavaleri, T.G. Plymate, and J.H. Stout, A Pressure–Volume–Temperature Equation of State for Sn (β) by Energy Dispersive x-Ray Diffraction in a Heated Diamond-Anvil Cell, J. Phys. Chem. Solids, 1988, 49, p 945-956ADSCrossRefGoogle Scholar
  26. 26.
    Z. Moser, W. Gąsior, J. Pstruś, I. Kaban, and W. Hoyer, Thermophysical Properties of Liquid In-Sn Alloys, Int. J. Thermophys., 2009, 30, p 1811-1822ADSCrossRefGoogle Scholar
  27. 27.
    M. Liukkonen, Assessment of Surface Energy Functions for Solid Elements, Helsinki University of Technology, Espoo, 2007Google Scholar
  28. 28.
    Q. Jiang and H. Lu, Size Dependent Interface Energy and Its Applications, Surf. Sci. Rep., 2008, 63, p 427-464ADSCrossRefGoogle Scholar
  29. 29.
    A. Vegh and G. Kaptay, Modelling Surface Melting of Macro-crystals and Melting of Nano-crystals for the Case of Perfectly Wetting Liquids in One-Component Systems Using Lead as an Example, Calphad, 2018, 63, p 37-50CrossRefGoogle Scholar
  30. 30.
    C. Ma and A. Navrotsky, Thermodynamics of the CoO-ZnO System at Bulk and Nanoscale, Chem. Mater., 2012, 24, p 2311-2315CrossRefGoogle Scholar
  31. 31.
    T. Ivas, A.N. Grundy, E. Povoden-Karadeniz, and L.J. Gauckler, Phase Diagram of CeO2-CoO for Nano-sized Powders, Calphad, 2012, 36, p 57-64CrossRefGoogle Scholar
  32. 32.
    S.S. Kim, Thermodynamic Modeling of the CeO2-CoO Nano-phase Diagram, J Alloys Compounds, 2014, 588, p 697-704CrossRefGoogle Scholar
  33. 33.
    C.-H. Chang and R.H. Castro, Surface and Grain Boundary Energies of Tin Dioxide at Low and High Temperatures and Effects on Densification Behavior, J. Mater. Res., 2014, 29, p 1034-1046ADSCrossRefGoogle Scholar
  34. 34.
    Y. Ma, R.H. Castro, W. Zhou, and A. Navrotsky, Surface Enthalpy and Enthalpy of Water Adsorption of Nanocrystalline Tin Dioxide: Thermodynamic Insight on the Sensing Activity, J. Mater. Res., 2011, 26, p 848-853ADSCrossRefGoogle Scholar
  35. 35.
    J. Oviedo and M. Gillan, Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First-Principles Calculations, Surf. Sci., 2000, 463, p 93-101ADSCrossRefGoogle Scholar
  36. 36.
    A. Beltran, J. Andrés, E. Longo, and E. Leite, Thermodynamic Argument about SnO2 Nanoribbon Growth, Appl. Phys. Lett., 2003, 83, p 635-637ADSCrossRefGoogle Scholar
  37. 37.
    Y. Duan, Electronic Properties and Stabilities of Bulk and Low-Index Surfaces of SnO in Comparison with SnO2: A First-Principles Density Functional Approach with an Empirical Correction of van der Waals Interactions, Phys. Rev. B, 2008, 77, p 045332ADSCrossRefGoogle Scholar
  38. 38.
    H. Zhang, F. Huang, B. Gilbert, and J.F. Banfield, Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles, J. Phys. Chem. B, 2003, 107, p 13051-13060CrossRefGoogle Scholar
  39. 39.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L. Marks, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Techn. Universitat Wien, Austria, 2018, ISBN 3-9501031-1-2Google Scholar
  40. 40.
    H. Giefers, F. Porsch, and G. Wortmann, High-pressure EXAFS and XRD Investigation of Unit Cell Parameters of SnO, Phys. Scr., 2005, 2005, p 538-540CrossRefGoogle Scholar
  41. 41.
    S.R. Shieh, A. Kubo, T.S. Duffy, V.B. Prakapenka, and G. Shen, High-pressure Phases in SnO2 to 117 GPa, Phys. Rev. B, 2006, 73, p 014105ADSCrossRefGoogle Scholar
  42. 42.
    D. Chatain, L. Coudurier, and N. Eustathopoulos, Wetting and Interfacial Bonding in Ionocovalent Oxide-Liquid Metal Systems, Rev. Phys. Appl., 1988, 23, p 1055-1064CrossRefGoogle Scholar
  43. 43.
    P. Nikolopoulos, S. Agathopoulos, and A. Tsoga, A Method for the Calculation of Interfacial Energies in Al2O3 and ZrO2/Liquid–Metal and liquid–Alloy Systems, J. Mater. Sci., 1994, 29, p 4393-4398ADSCrossRefGoogle Scholar
  44. 44.
    G. Kaptay and E. Báder, Ion-Dipole Adhesion Energy Model for Wettability of Oxide Ceramics by Non-reactive Liquid Metals, Trans. JWRI, 2001, 30(SPI), p 55-60Google Scholar
  45. 45.
    H.T. Li, L.F. Chen, X. Yuan, W.Q. Zhang, J.R. Smith, and A.G. Evans, Interfacial Stoichiometry and Adhesion at Metal/α-Al2O3 Interfaces, J. Am. Ceram. Soc., 2011, 94, p S154-S159CrossRefGoogle Scholar
  46. 46.
    L. Jeurgens, W. Sloof, F. Tichelaar, and E. Mittemeijer, Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminum Oxide Films on Aluminum Substrates, Phys. Rev. B, 2000, 62, p 4707-4719ADSCrossRefGoogle Scholar
  47. 47.
    M.-C. Heuzey and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties of Liquid Tin Solutions, Metall. Mater. Trans. B, 1996, 27, p 810-828CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Solid State EngineeringUniversity of Chemistry and TechnologyPragueCzech Republic
  2. 2.Department of Inorganic ChemistryUniversity of Chemistry and TechnologyPragueCzech Republic

Personalised recommendations