Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 702–713 | Cite as

Experimental Diffusion Research on BCC Ti-Mn Binary and Ti-Al‐Mn Ternary Alloys

  • Xiang Huang
  • Junyi Tan
  • Yanhua GuoEmail author
  • Guanglong Xu
  • Yuwen CuiEmail author


Interdiffusion in the BCC phase of the Ti-Mn binary and Ti-Al-Mn ternary systems was investigated between 1273 and 1473 K by applying the diffusion-couple technique. The local chemical compositions within the interdiffusion zone of the diffusion couples were acquired by electron probe microanalysis (EPMA). The raw composition profiles were then analytically represented by the error function expansion, which allow the ternary inter- and impurity diffusivities to be appropriately extracted by the Whittle–Green and generalized Hall methods, respectively. It was demonstrated that, all four diffusion coefficients \(\mathop {\tilde{D}}\nolimits_{ij}^{k}\) (i, j = Al, Mn), both main and cross ones, increase with increasing the composition of diffusing specie at 1473 K, whereas at 1273 K \(\mathop {\tilde{D}}\nolimits_{\text{MnMn}}^{\text{Ti}}\) and \(\mathop {\tilde{D}}\nolimits_{\text{MnAl}}^{\text{Ti}}\) are enhanced by the addition of diffusing specie Mn but \(\mathop {\tilde{D}}\nolimits_{\text{AlAl}}^{\text{Ti}}\) and \(\mathop {\tilde{D}}\nolimits_{\text{AlMn}}^{\text{Ti}}\) are in weak dependence with the Al content. A complete comparison among seven Ti-Al-X (Ni, Co, Fe, Mn, Cr, V and Mo) ternary systems reveals that the order of the average main interdiffusion coefficients \(\overline{{\mathop {\tilde{D}}\nolimits_{\text{XX}}^{\text{Ti}} }}\) (X = Ni, Co, Fe, Mn, Cr, V and Mo) exhibits DNi > DCo > DFe > DMn > DCr > DV > DMo.


BCC phase generalized Hall method impurity diffusivity interdiffusion Ti-Al-Mn ternary Ti-Mn binary Whittle–Green method 



This work is supported by the National Natural Science Foundation of China (No. 51571113) and Joint Project of Industry-University-Research of Jiangsu Province (Grant No: BY2016005-02). YG would like to thank the support from the National Natural Science Foundation of China (No. 11647162) and Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD). GX wishes to gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 51701094) and the Natural Science Foundation of Jiangsu Province (BK20171014).


  1. 1.
    R.R. Boyer, Attributes, Characteristics, and Applications of Titanium and Its Alloys, JOM, 2010, 62(5), p 21-24CrossRefGoogle Scholar
  2. 2.
    O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S. Fox, A Comparative Study of the Mechanical Properties of High-Strength β-Titanium Alloys, J. Alloys Compd., 2008, 457(1), p 296-309CrossRefGoogle Scholar
  3. 3.
    G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007Google Scholar
  4. 4.
    A.V. Mikhaylovskaya, A. Omar, A.D. Kotov, J.S. Kwame, T. Pourcelot, I.S. Golovin, and V.K. Portnoy, Superplastic Deformation Behaviour and Microstructure Evolution of Near-α Ti-Al-Mn Alloy, Mater. Sci. Eng. A, 2017, 708, p 469-477CrossRefGoogle Scholar
  5. 5.
    Y. Sumi, S. Ueta, M. Ueda, and M. Ikeda, Mechanical Properties of Ti-Mn-Al-Fe Alloys After Solution Heat Treatment, Mater. Sci. Forum, 2014, 783–786, p 597-601CrossRefGoogle Scholar
  6. 6.
    J.W. Lu, P. Ge, and Y.Q. Zhao, Recent Development of Effect Mechanism of Alloying Elements in Titanium Alloy Design, Rare Metal Mater. Eng., 2014, 43(4), p 0775-0779CrossRefGoogle Scholar
  7. 7.
    L. Feng, J.S. Li, L. Huang, H. Chang, Y.W. Cui, and L. Zhou, Interdiffusion Behavior of Ti-Mo Binary System in β Phase, Chin. J. Nonferrous Metals, 2009, 19(10), p 1766-1771Google Scholar
  8. 8.
    A. Laik, G.B. Kale, and K. Bhanumurthy, Interdiffusion Studies between a Mo-Based Alloy and Ti, Metall. Mater. Trans. A, 2006, 37A(10), p 2919-2926ADSCrossRefGoogle Scholar
  9. 9.
    S.Y. Lee, O. Taguchi, and Y. Iijima, Diffusion of Aluminium in β-Titanium, Mater. Trans., 2010, 51(10), p 1809-1813CrossRefGoogle Scholar
  10. 10.
    I. Thibon, D. Ansel, and T. Gloriant, Interdiffusion in β-Ti-Zr Binary Alloys, J. Alloys Compd., 2009, 470(1–2), p 127-133CrossRefGoogle Scholar
  11. 11.
    C.P. Wang, Y.S. Luo, Y. Lu, J.J. Han, Z. Shi, Y.H. Guo, and X.J. Liu, Interdiffusion and Atomic Mobilities in BCC Ti-Ga and Ti-Cu Alloys, J. Phase Equilib. Diffus., 2017, 38(2), p 84-93CrossRefGoogle Scholar
  12. 12.
    T. Takahashi, Ternary Diffusion and Thermodynamic Interaction in the β Solid Solutions of Ti-Al-Co Alloys, J. Jpn. Inst. Metals, 2009, 59(8), p 432-438CrossRefGoogle Scholar
  13. 13.
    T. Takahashi and Y. Minamino, Ternary Diffusion and Thermodynamic Interaction in the β Solid Solutions of Ti-Al-Fe Alloys at 1423 K, J. Alloys Compd., 2012, 545, p 168-175CrossRefGoogle Scholar
  14. 14.
    B. Gao, Y.Y. Gu, Q.J. Wu, Y.H. Guo, and Y.W. Cui, Diffusion Research in BCC Ti-Al-Ni Ternary Alloys, J. Phase Equilib. Diffus., 2017, 38(4), p 502-508CrossRefGoogle Scholar
  15. 15.
    Y. Chen, B. Tang, G.L. Xu, C.Y. Wang, H.C. Kou, J.S. Li, and Y.W. Cui, Diffusion Research in BCC Ti-Al-Mo Ternary Alloys, Metall. Mater. Trans. A, 2014, 45A(4), p 1647-1652ADSCrossRefGoogle Scholar
  16. 16.
    E. Santos and F. Dyment, Solvent and Solute Diffusion in B.C.C. Ti-Co and Ti-Mn Alloys, Philos. Mag., 1975, 31(4), p 809-827ADSCrossRefGoogle Scholar
  17. 17.
    Y. Nakamura, H. Nakajima, S. Ishioka, and M. Koiwa, Effect of Oxygen on Diffusion of Manganese in α Titanium, Acta Metall., 1988, 36(10), p 2787-2795CrossRefGoogle Scholar
  18. 18.
    L.Y. Chen, C.H. Li, A.T. Qiu, X.G. Lu, W.Z. Ding, and Q.D. Zhong, Calculation of Phase Equilibria in Ti-Al-Mn Ternary System Involving a New Ternary Intermetallic Compound, Intermetallics, 2010, 18(11), p 2229-2237CrossRefGoogle Scholar
  19. 19.
    Y. Chen, J.S. Li, B. Tang, G.L. Xu, H.C. Kou, and Y.W. Cui, Interdiffusion in FCC Co-Al-Ti Ternary Alloys, J. Phase Equilib. Diffus., 2015, 36(2), p 127-135CrossRefGoogle Scholar
  20. 20.
    F. Sauer and V. Freise, Diffusion in Binären Gemischen Mit Volumenänderung, Z. Elektrochem. Ber. Bunsenges. Phys. Chem., 1962, 66(4), p 353-362Google Scholar
  21. 21.
    D.P. Whittle and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Mater., 1974, 8(7), p 883-884Google Scholar
  22. 22.
    T. Ahmed, I.V. Belova, and G.E. Murch, Finite Difference Solution of the Diffusion Equation and Calculation of the Interdiffusion Coefficient Using the Sauer–Freise and Hall Methods in Binary Systems, Procedia Eng., 2015, 105(247), p 570-575CrossRefGoogle Scholar
  23. 23.
    J.S. Kirkaldy, Diffusion in Multicomponent Metallic Systems, Can. J. Phys., 1957, 35(4), p 435-440ADSCrossRefGoogle Scholar
  24. 24.
    F.J.A. den Broeder, A General Simplification and Improvement of the Matano–Boltzmann Method in the Determination of the Interdiffusion Coefficients in Binary Systems, Scr. Mater., 1969, 3(5), p 321-325Google Scholar
  25. 25.
    C.Y. Wang, G.L. Xu, and Y.W. Cui, Mapping of Diffusion and Nanohardness Properties of Fcc Co-Al-V Alloys Using Ternary Diffusion Couples, Metall. Trans. A, 2017, 48(9), p 1-11Google Scholar
  26. 26.
    J.A. Nesbitts and R.W. Heckel, Interdiffusion in Ni-Rich, Ni-Cr-Al Alloys at 1100 and 1200 °C: part II. Diffusion Coefficients and Predicted Concentration Profiles, Metall. Trans. A, 1987, 18, p 2075-2086CrossRefGoogle Scholar
  27. 27.
    L.D. Hall, An Analytical Method of Calculating Variable Diffusion Coefficients, J. Chem. Phys., 1953, 21, p 87-89ADSCrossRefGoogle Scholar
  28. 28.
    J.S. Kirkaldy, D. Weichert, and Z. Ul Haq, Diffusion in Multicomponent Metallic Systems: VI. Some Thermodynamic Properties of the D Matrix and the Corresponding Solutions of the Diffusion Equations, Can. J. Phys., 1963, 41(12), p 2166-2173ADSCrossRefGoogle Scholar
  29. 29.
    F.O. Shuck and H.L. Toor, Diffusion in the Three Component Liquid System Methyl Alcohol-n-Propyl Alcohol-Isobutyl Alcohol, J. Phys. Chem., 1963, 67(3), p 540-545CrossRefGoogle Scholar
  30. 30.
    T. Takahashi, N. Matsuda, S. Kubo, T. Hino, M. Komatsu, and K. Hisayuki, Interdiffusion in the β Solid Solution of Ti-Al-Cr System, J. Jpn. Inst. Metals, 2004, 54(7), p 280-286CrossRefGoogle Scholar
  31. 31.
    T. Takahashi, Y. Minamino, and M. Komatsu, Interdiffusion in β Phase of the Ternary Ti-Al-V System, Mater. Trans., 2008, 49(1), p 125-132CrossRefGoogle Scholar
  32. 32.
    G.M. Hood and R.J. Schultz, Ultra-fast Solute Diffusion in α-Ti and α-Zr, Philos. Mag., 1972, 26(2), p 329-336ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Tech Institute for Advanced Materials and School of Materials Science and EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.ICMA Instituto de Ciencia de Materiales de AragónSaragossaSpain

Personalised recommendations