Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 694–701 | Cite as

A Thermodynamic Modelling of the Stability of Sigma Phase in the Cr-Fe-Ni-V High-Entropy Alloy System

  • Won-Mi Choi
  • Yong Hee Jo
  • Dong Geun Kim
  • Seok Su Sohn
  • Sunghak Lee
  • Byeong-Joo LeeEmail author


The addition of vanadium (V) to the representative Co-Cr-Fe-Mn-Ni high-entropy alloy (HEA) system is attracting attention expecting a large solid solution hardening effect. For the design of V-added HEAs, prediction of the sigma (σ) phase formation has been mainly issued because it affects a significant influence on the mechanical properties. Although the CALculation of PHAse Diagram (CALPHAD) approach can be a good tool for prediction of phase structures, robust thermodynamic database is still required for an accurate prediction of V-added HEA systems. The present work aims at providing a thermodynamic description for the Cr-Fe-Ni-V HEA system, focusing on the thermodynamic stability of the σ phase. A parameterization technique which minimizes the number of fitting parameter and simplifies the extension into higher-order systems is proposed and applied to the σ phase with multiple sublattice during modelling the Cr-Ni-V and Fe-Ni-V systems. The reliability of the developed thermodynamic description for the Cr-Fe-Ni-V quaternary system is experimentally confirmed by designing, fabricating and analysing the phase structures of a series of Cr-Fe-Ni-V HEAs.


CALPHAD Cr-Fe-Ni-V high-entropy alloy sigma phase thermodynamic modelling 



This research was supported by the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (2016M3D1A1023383).


  1. 1.
    J. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299-303CrossRefGoogle Scholar
  2. 2.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213-218CrossRefGoogle Scholar
  3. 3.
    A. Gali and E.P. George, Tensile Properties of High-and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74-78CrossRefGoogle Scholar
  4. 4.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153-1158ADSCrossRefGoogle Scholar
  5. 5.
    D.B. Miracle, J. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 2014, 16, p 494-525ADSCrossRefGoogle Scholar
  6. 6.
    Z. Wu, C.M. Parish, and H. Bei, Nano-twin Mediated Plasticity in Carbon-Containing FeNiCoCrMn High Entropy Alloys, J. Alloys Compd., 2015, 647, p 815-822CrossRefGoogle Scholar
  7. 7.
    D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, and Y. Zhang, High-Entropy Al0.3CoCrFeNi Alloy Fibers with High Tensile Strength and Ductility at Ambient and Cryogenic Temperatures, Acta Mater., 2017, 123, p 285-294CrossRefGoogle Scholar
  8. 8.
    Y.H. Jo, S. Jung, W.-M. Choi, S.S. Sohn, H.S. Kim, B.-J. Lee, N.J. Kim, and S. Lee, Cryogenic Strength Improvement by Utilizing Room-Temperature Deformation Twinning in a Partially Recrystallized VCrMnFeCoNi High-Entropy Alloy, Nat. Commun., 2017, 8, p 15719ADSCrossRefGoogle Scholar
  9. 9.
    Y.H. Jo, W.-M. Choi, D.G. Kim, A. Zargaran, S.S. Sohn, H.S. Kim, B.-J. Lee, and S. Lee, Utilization of Brittle σ Phase for Strengthening and Strain Hardening in Ductile VCrFeNi High-Entropy Alloy, submitted, 2018Google Scholar
  10. 10.
    G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.D. Tortika, and O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd., 2014, 591, p 11-21CrossRefGoogle Scholar
  11. 11.
    W.-M. Choi, S. Jung, Y.H. Jo, S. Lee, and B.-J. Lee, Design of New Face-Centered Cubic High Entropy Alloys by Thermodynamic Calculation, MMI, 2017, 23, p 839-847ADSGoogle Scholar
  12. 12.
    H.L. Lukas, S.G. Fries, and B. Sundman, Ed., Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, 2007zbMATHGoogle Scholar
  13. 13.
    TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee, B. Sundman at KTH, KTH, Stockholm (1999)Google Scholar
  14. 14.
    K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.J. Lee, Thermodynamic Calculation on the Stability of (Fe, Mn) 3 AlC Carbide in High Aluminum Steels, Alloy Compd., 2010, 505, p 217-223CrossRefGoogle Scholar
  15. 15.
    N. Park, B.-J. Lee, and N. Tsuji, The Phase Stability of Equiatomic CoCrFeMnNi High-Entropy Alloy: Comparison Between Experiment and Calculation Results, J. Alloys Compd., 2017, 719, p 189-193CrossRefGoogle Scholar
  16. 16.
    O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348CrossRefGoogle Scholar
  17. 17.
    G. Inden, The Effect of Continuous Transformations on Phase Diagrams, Bull. Alloy Phase Diagr., 1982, 2, p 412-422CrossRefGoogle Scholar
  18. 18.
    M. Hillert and M. Jarl, A Model for Alloying Effects in Ferro-magnetic Metals, CALPHAD, 1978, 2, p 227-238CrossRefGoogle Scholar
  19. 19.
    B.-J. Lee, A Thermodynamic Evaluation of the Fe-Cr-Ni System, J. Korean Inst. Met. Mater., 1993, 31, p 480-489Google Scholar
  20. 20.
    B.-J. Lee, A Thermodynamic Evaluation of the Fe-Cr-V System, Z. Metallkd., 1992, 83, p 292-299Google Scholar
  21. 21.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425CrossRefGoogle Scholar
  22. 22.
    Z.S. Xing, D.D. Gohil, A.T. Dinsdale, and T. Chart, DMA(A) 103, National Physical Laboratory, London, 1985Google Scholar
  23. 23.
    J.-O. Andersson and B. Sundman, Thermodynamic Properties of the Cr-Fe System, CALPHAD, 1987, 11, p 83-92CrossRefGoogle Scholar
  24. 24.
    W. Huang, A Thermodynamic Evaluation of the Fe-V-C System, Z. Metallkd., 1991, 82, p 391-401Google Scholar
  25. 25.
    B.-J. Lee, On the Stability of Cr Carbides, CALPHAD, 1992, 16, p 121-149CrossRefGoogle Scholar
  26. 26.
    B.-J. Lee, Revision of Thermodynamic Descriptions of the Fe-Cr & Fe-Ni Liquid Phases, CALPHAD, 1993, 17, p 251-268CrossRefGoogle Scholar
  27. 27.
    J. Korb and K. Hack, Ni–V, COST507—Thermochemical Database for Light Metal Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., European Communities, Luxembourg, 1998, p 261-263Google Scholar
  28. 28.
    B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-calc Databank System, CALPHAD, 1985, 9, p 153-190CrossRefGoogle Scholar
  29. 29.
    A.A. Kodentzov, S.F. Dunaev, and E.M. Slusarenko, Determination of the Phase Diagram of the V-Ni-Cr System Using Diffusion Couples and Equilibrated Alloys, J. Less-Common Met., 1987, 135, p 15-24CrossRefGoogle Scholar
  30. 30.
    S.K. Singh and K.P. Gupta, The Cr-Ni-V System, J. Alloy Phase Equilibria, 1995, 16, p 129-136CrossRefGoogle Scholar
  31. 31.
    C.C. Zhao, S.Y. Yang, Y. Lu, Y.H. Guo, C.P. Wang, and X.J. Liu, Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Fe–Ni–V System, CALPHAD, 2014, 46, p 80-86CrossRefGoogle Scholar
  32. 32.
    K.C. Hari Kumar and V. Raghavan, A Thermodynamic Reassessment of the Fe–V System, CALPHAD, 1991, 15, p 307-314CrossRefGoogle Scholar
  33. 33.
    Z. Leong, J.S. Wróbel, S.L. Dudarev, R. Goodall, I. Todd, and D. Nguyen-Manh, The Effect of Electronic Structure on the Phases Present in High Entropy Alloys, Sci. Rep., 2017, 7, p 39803ADSCrossRefGoogle Scholar
  34. 34.
    S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 10Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Won-Mi Choi
    • 1
  • Yong Hee Jo
    • 1
  • Dong Geun Kim
    • 1
  • Seok Su Sohn
    • 1
  • Sunghak Lee
    • 1
  • Byeong-Joo Lee
    • 1
    Email author
  1. 1.Department of Material Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations