Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 678–693 | Cite as

A Review of Calphad Modeling of Ordered Phases

  • Bo Sundman
  • Qing Chen
  • Yong Du
Article
  • 373 Downloads

Abstract

The models used in Calphad to describe long and short range ordering in multicomponent alloys have improved significantly over the last 20 years. For long range ordering the compound energy formalism has gained universal acceptance and it is now possible to calculate realistic phase diagrams including also short range ordering which means the Gibbs energy is modeled correctly. There is still a problem in separating enthalpy and entropy which makes extrapolations to low temperatures uncertain. In this paper some of the history will be reviewed together with the current status and some new ideas.

Keywords

Calphad modeling order/disorder phase diagrams 

Notes

Acknowledgments

One of the authors (Bo Sundman) acknowledges the distinguished professor program released by the Ministry of Education of China and the State Administration of Foreign Experts Affairs of China.

References

  1. 1.
    W. Shockley. Theory of Order for the Copper Gold Alloy System. The Journal of Chemical Physics, 6(3):130–144, 1938.ADSCrossRefGoogle Scholar
  2. 2.
    W.L. Bragg and E.J. Williams. The Effect of Thermal Agitation on Atomic Arrangement in Alloys. Proceedings of the Royal Society of London. Series A, 145(855):699–730, 1934.ADSCrossRefGoogle Scholar
  3. 3.
    R. Kikuchi. A theory of Cooperative Phenomena. Physical Review, 81(6):988, 1951.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H.L. Lukas, S.G. Fries, and B. Sundman. Computational Thermodynamics: the Calphad Method, volume 131. Cambridge University Press, Cambridge, United Kingdom, 2007.CrossRefGoogle Scholar
  5. 5.
    O. Redlich and A.T. Kister. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Industrial & Engineering Chemistry, 40(2):345–348, 1948.CrossRefGoogle Scholar
  6. 6.
    B. Sundman and J. Ågren. A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications. Journal of Physics and Chemistry of Solids, 42(4):297–301, 1981.ADSCrossRefGoogle Scholar
  7. 7.
    B. Sundman, I. Ohnuma, N. Dupin, U.R. Kattner, and S.G. Fries. An Assessment of the Entire Al-Fe System Including D03 Ordering. Acta Mater., 57(10):2896–2908, 2009.CrossRefGoogle Scholar
  8. 8.
    C.E. Campbell, U.R. Kattner, Z.-K. Liu (2014) The Development of Phase-based Property Data Using the CALPHAD Method and Infrastructure Needs. Integr. Mater. Manuf. Innov.; 3:12CrossRefGoogle Scholar
  9. 9.
    M. Hillert and L.-I. Staffansson. The Regular Solution Model for Stoichiometric Phases and Ionic Melts. Acta Chemica Scandinavica, 24:3618–3626, 1970.CrossRefGoogle Scholar
  10. 10.
    M. Temkin. Mixtures of Fused Salts as Ionic Solutions. Acta Phys Chim, 20:411–420, 1945.Google Scholar
  11. 11.
    M. Hillert. The Compound Energy Formalism. Journal of Alloys and Compounds, 320(2):161–176, 2001.CrossRefGoogle Scholar
  12. 12.
    J. Rogal, S.V. Divinski, M.W. Finnis, A. Glensk, J. Neugebauer, J.H. Perepezko, S. Schuwalow, M.H.F. Sluiter, B. Sundman (2014) Perspectives on Point Defect Thermodynamics. Phys Status Solidi B; 251:97–129ADSCrossRefGoogle Scholar
  13. 13.
    M. Hillert. Some Viewpoints on the Use of Computer for Calculating Phase Diagrams. Physica B, 103B:31–40, 1981.ADSCrossRefGoogle Scholar
  14. 14.
    B. Sundman, X.-G. Lu, and H. Ohtani. The Implementation of an Algorithm to Calculate Thermodynamic Equilibria for Multi-Component Systems with Non-ideal Phases in a Free Software. Computational Materials Science, 101:127–137, 2015.CrossRefGoogle Scholar
  15. 15.
    P. Gustafson. Thermodynamic Evaluation of the Fe-C system. Scandinavian Journal of Metallurgy, 14:259–267, 1985.Google Scholar
  16. 16.
    B.-J. Lee. Thermodynamic Assessment of the Fe-Nb-Ti-C-N system. Metallurgical and Materials Transactions A, 32A:2423–2439, 2001.CrossRefGoogle Scholar
  17. 17.
    A. van de Walle, R. Sun, Q.-J. Hong, S. Kadkhodaei (2017) Software Tools for High-throughput Calphad from First-principles Data. Calphad; 58:70-81CrossRefGoogle Scholar
  18. 18.
    T.I. Barry, A.T. Dinsdale, J.A. Gisby, B. Hallstedt, M. Hillert, B. Jansson, S. Jonsson, B. Sundman, and J.R. Taylor. The Compound Energy Model for Ionic Solutions with Applications to Solid Oxides. Journal of Phase Equilibria, 13(5):459–475, 1992.CrossRefGoogle Scholar
  19. 19.
    B. Sundman. An Assessment of the Fe-O System. Journal of Phase Equilibria, 12:127–140, 1991.CrossRefGoogle Scholar
  20. 20.
    C. Guéneau, M. Baichi, M.D. Labroche, C. Chatillon, B. Sundman. Thermodynamic Assessment of the Uranium-Oxygen System. J Nucl. Mater., 304:161–175, (2002).ADSCrossRefGoogle Scholar
  21. 21.
    B. Hallstedt. Thermodynamic Assessment of the System MgO-Al2O3. J Am. Ceram. Soc., 75(6):1497–1507, 1992.CrossRefGoogle Scholar
  22. 22.
    I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, Anderson T. A Binary Database for III-V Compound Semiconductor Systems. Calphad 18, 177–222 (1994)CrossRefGoogle Scholar
  23. 23.
    Q. Chen, M. Hillert, B. Sundman, W.A. Oates, S.G. Fries, and R. Schmid-Fetzer. Phase Equilibria, Defect Chemistry and Semiconducting Properties of CdTe(s) - Thermodynamic Modeling. Journal of Electronic Materials, 27(8):961–971, 1998.ADSCrossRefGoogle Scholar
  24. 24.
    Q. Chen and M. Hillert. The Compound Energy Model for Compound Semiconductors. Journal of Alloys and Compounds, 245(1–2):125–131, 1996.CrossRefGoogle Scholar
  25. 25.
    J.-B. Li and J.-C. Tedenac. Thermodynamic Modeling of Native Point Defects and Dopants of GaN Semiconductors. Journal of Electronic Materials, 31(4):321–326, 2002.ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Peters, J.W. Doak, W.-W. Zhang, J.E. Saal, G.B. Olson, and P.W. Voorhees. Thermodynamic Modeling of the PbX (X= S, Te) Phase Diagram Using a Five Sub-lattice and Two Sub-lattice Model. Calphad, 58:17–24, 2017.CrossRefGoogle Scholar
  27. 27.
    B. Sundman and F. Aldinger. Workshop on Thermodynamic Models and Data for Pure Elements and Other Endmembers of Solutions. Calphad, 19:437–571, 1995.CrossRefGoogle Scholar
  28. 28.
    Wagner C. and W. Schottky. Theory of Arranged Mixed Phases. Z Phys. Chem. B, 11:163–210, 1930.Google Scholar
  29. 29.
    N. Dupin, Personal Communication. (1994)Google Scholar
  30. 30.
    I. Ansara, B. Burton, Q. Chen, M. Hillert, A. Fernandez-Guillermet, S.G. Fries, H.L. Lukas, H.-J. Seifert, and W.A. Oates. Models for Composition Dependence. Calphad, 24(1):19–40, 2000.CrossRefGoogle Scholar
  31. 31.
    J.-O. Andersson. A Thermodynamic Evaluation of the Fe-Mo-C System. Calphad, 12:9–23, 1988.CrossRefGoogle Scholar
  32. 32.
    S.G. Fries and B. Sundman. Using Re-W Sigma-phase First-principles Results in the Bragg-Williams Approximation to Calculate Finite-temperature Thermodynamic Properties. Phys. Rev. B 66, 012203 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    R. Mathieu, N. Dupin, J.-C. Crivello, Y. Yaqoob, A. Breidi, J.-M. Fiorani, N. David, and J.-M. Joubert. Calphad Description of the Mo-Re System Focused on the Sigma Phase Modeling. Calphad, 43:18–31, 2013.CrossRefGoogle Scholar
  34. 34.
    N. Dupin, B. Sundman, U.R. Kattner, S.G. Fries, M. Palumbo, Calphad meeting Mexico (2018)Google Scholar
  35. 35.
    I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman. Thermodynamic Assessment of the Al-Ni System. Journal of Alloys and Compounds, 247:20–30, 1997.CrossRefGoogle Scholar
  36. 36.
    B. Sundman, S.G. Fries, and W.A. Oates. A Thermodynamic Assessment of the Au-Cu System. Calphad, 22(3):335–354, 1998.CrossRefGoogle Scholar
  37. 37.
    B. Sundman, N. Dupin, Thermodynamic Assessment of the Al-Ni System. JEEP Conference (2002)Google Scholar
  38. 38.
    X.-G. Lu, B. Sundman, and J. Ågren. Thermodynamic Assessments of the Ni-Pt and Al-Ni-Pt systems. Calphad, 33:450–456, 2009.CrossRefGoogle Scholar
  39. 39.
    Y.-R. Wang, P. Zhou, Y.-B. Peng, Y. Du, B. Sundman, J.-Z. Long, T. Xu, and Z.-J. Zhang. A Thermodynamic Description of the Al-Co-Ni System and Site Occupancy in Co-AlNi3 Composite Binder Phase. J. Alloy Compd., 687:855–866, 2016.CrossRefGoogle Scholar
  40. 40.
    B. Hu, X.-M. Yuan, Y. Du, J. Wang, and Z.-K. Liu. Thermodynamic Reassessment of the Ni-Si-Ti System Using a Four Sublattice Model for Ordered/Disordered fcc Phases Supported by First-principles Calculations. J. Alloy Compd., 693:344–56, 2017.CrossRefGoogle Scholar
  41. 41.
    B. Hu, Y. Du, J.C. Schuster, W.-H. Sun, S.-H. Liu, and C.-Y. Tang. Thermodynamic Modeling of the Cr-Ni-Ti System Using a Four-sublattice Model for Ordered/Disordered bcc Phases. Thermochimica Acta, 578:35–42, 2014.CrossRefGoogle Scholar
  42. 42.
    T. Abe and M. Shimono. A Description of the Effect of Short-Range Ordering in BCC Phases with Four Sublattices. Calphad, 45:40–48, 2014.CrossRefGoogle Scholar
  43. 43.
    D. Connetable, J. Lacaze, P. Maugis, and B. Sundman. A Calphad Assessment of Al-C-Fe System with the \(\kappa\) Carbide Modeled as an Ordered Form of the fcc Phase. Calphad, 32(2):361–370, 2008.CrossRefGoogle Scholar
  44. 44.
    R. Kikuchi and D. de Fontaine. Calculation of Cu-Au phase-diagram by Cluster Variation Method. JOM, 28(12):A27, 1976.Google Scholar
  45. 45.
    J.M. Sanchez and D. de Fontaine. The fcc Ising Model in the Cluster Variation Approximation. Physical Review B, 17(7):2926, 1978.ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    J.M. Sanchez and D. de Fontaine. Ordering in fcc Lattices with First- and Second-Neighbor Interactions. Physical Review B, 21(1):216, 1980.ADSCrossRefGoogle Scholar
  47. 47.
    J.M. Sanchez and D. de Fontaine. Ising Model Phase Diagram Calculations in the fcc Lattice with First- and Second-Neighbor Interactions. Physical Review B, 25(3):1759, 1982.ADSCrossRefGoogle Scholar
  48. 48.
    J.M. Sanchez. Pair Correlations in the Cluster Variation Approximation. Physica A: Statistical Mechanics and its Applications, 111(1–2):200–216, 1982.CrossRefGoogle Scholar
  49. 49.
    J.M. Sanchez, F. Ducastelle, and D. Gratias. Generalized Cluster Description of Multicomponent Systems. Physica A: Statistical Mechanics and its Applications, 128(1–2):334–350, 1984.MathSciNetCrossRefGoogle Scholar
  50. 50.
    T. Mohri, J.M. Sanchez, and D. de Fontaine. Overview no. 43: Binary Ordering Prototype Phase Diagrams in the Cluster Variation Approximation. Acta Metallurgica, 33(7):1171–1185, 1985.CrossRefGoogle Scholar
  51. 51.
    K. Binder, J.L. Lebowitz, M.K. Phani, and M.H. Kalos. Monte Carlo Study of the Phase Diagrams of Binary Alloys with Face Centered Cubic Lattice Structure. Acta Metallurgica, 29(9):1655–1665, 1981.CrossRefGoogle Scholar
  52. 52.
    C. Bichara and G. Inden. Monte Carlo Calculation of the Phase Diagram of BCC Fe-Al Alloys. Scripta Metallurgica et Materialia, 25(11):2607–2611, 1991.CrossRefGoogle Scholar
  53. 53.
    H. Ackermann, G. Inden, and R. Kikuchi. Tetrahedron Approximation of the Cluster Variation Method for bcc Alloys. Acta Metallurgica, 37(1):1–7, 1989.CrossRefGoogle Scholar
  54. 54.
    A. van de Walle and M. Asta. Self-driven Lattice-Model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams. Modelling and Simulation in Materials Science and Engineering, 10(5):521, 2002.ADSCrossRefGoogle Scholar
  55. 55.
    R.H. Fowler and E.A. Guggenheim. Statistical Thermodynamics. Cambridge University Press, Cambridge, United Kingdom, 1939.zbMATHGoogle Scholar
  56. 56.
    C.N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. The Journal of Chemical Physics, 13(2):66–76, 1945.ADSCrossRefGoogle Scholar
  57. 57.
    Y.-Y. Li. Quasi-Chemical Theory of Order for the Copper Gold Alloy System. The Journal of Chemical Physics, 17(5):447–454, 1949.ADSCrossRefGoogle Scholar
  58. 58.
    Y.-Y. Li. Quasi-Chemical Method in the Statistical Theory of Regular mixtures. Phys. Rev., 76(7):972–979, 1949.ADSCrossRefGoogle Scholar
  59. 59.
    W.A. Oates and H. Wenzl. The Cluster/Site Approximation for Multicomponent Solutions-a Practical Alternative to the Cluster Variation Method. Scr. Mater., 35(5):623–627, 1996.CrossRefGoogle Scholar
  60. 60.
    W.A. Oates, F. Zhang, S.L. Chen, and Y.A. Chang. Improved Cluster-Site Approximation for the Entropy of Mixing in Multicomponent Solid Solutions. Physical Review B, 59(17):11221, 1999.ADSCrossRefGoogle Scholar
  61. 61.
    F. Zhang, Y.A. Chang, Y. Du, S.-L. Chen, and W.A. Oates. Application of the Cluster-Site Approximation (CSA) Model to the Fcc Phase in the Ni-Al System. Acta Materialia, 51(1):207–216, 2003.CrossRefGoogle Scholar
  62. 62.
    W. Cao, J. Zhu, Y. Yang, F. Zhang, Chen S.-L., W.A. Oates, and Y.A. Chang. Application of the Cluster/Site Approximation to fcc Phases in Ni-Al-Cr System. Acta Mater. 53, 4189–4197 (2005)CrossRefGoogle Scholar
  63. 63.
    J. Zhang, W.A. Oates, F. Zhang, S.-L. Chen, K.-C. Chou, and Y.A. Chang. Cluster/Site Approximation Calculation of the Ordering Phase Diagram for Cd-Mg Alloys. Intermetallics, 9:5–8, 2001.CrossRefGoogle Scholar
  64. 64.
    C. Zhang, J. Zhu, A. Bengtson, D. Morgan, F. Zhang, Y. Yang, and Chang Y.A. Thermodynamic Modeling of the Cr-Pt Binary System Using the Cluster/Site Approximation Coupling with First-principles Energetics Calculation. Acta Mater., 56:5796–5803, 2008.CrossRefGoogle Scholar
  65. 65.
    C. Zhang, J. Zhu, D. Morgan, Y. Yang, F. Zhang, W. Cao, and Chang Y.A. Thermodynamic Modeling of the Cr-Ir Binary System Using the Cluster/Site Approximation (CSA) Coupling with First-principles Energetic Calculation. Calphad, 33:420–424, 2009.CrossRefGoogle Scholar
  66. 66.
    C. Zhang, J. Zhu, A. Bengtson, D. Morgan, F. Zhang, W.-S. Cao, and Y.A. Chang. Modeling of Phase Stability of the fcc Phases in the Ni-Ir-Al System Using the Cluster/Site Approximation Method Coupling with First-principles Calculations. Acta Mater., 56:2576–2584, 2008.CrossRefGoogle Scholar
  67. 67.
    J. Zhu, C. Zhang, W. Cao, Y. Yang, F. Zhang, S.-L. Chen, D. Morgan, and Y.A. Chang. Experimental Investigation and Thermodynamic Modeling of the Ni-Al-Ru Ternary System. Acta Mater., 57:202–212, 2009.CrossRefGoogle Scholar
  68. 68.
    J. Zhu, C. Zhang, D. Ballard, P. Martin, J. Fournelle, W. Cao, and Y.A. Chang. Study of the Ni-rich Multi-phase Equilibria in Ni-Al-Pt Alloys Using the Cluster/Site Approximation for the Face-Centered Cubic Phases. Acta Mater., 58:180–188, 2010.CrossRefGoogle Scholar
  69. 69.
    J. Zhu, W. Cao, Y. Yang, F. Zhang, S.-L. Chen, W.A. Oates, and Y.A. Chang. Application of the Cluster/Site Approximation to fcc Phases in the Ni-Al-Cr-Re System. Acta Mater., 55:4545–4551, 2007.CrossRefGoogle Scholar
  70. 70.
    C. Zhang, F. Zhang, S.-L. Chen, W.S. Cao, and Y.A. Chang. Thermodynamic Modeling and Experimental Investigation of the Phase Stability at the Ni-rich Region of the Ni-Al-Cr-Ir System. Acta Mater., 57:6246–6256, 2011.CrossRefGoogle Scholar
  71. 71.
    A. Kusoffsky. Thermodynamic Evaluation of the Ternary Ag-Au-Cu System Including a Short Range Order Description. Acta Materialia, 50(20):5139–5145, 2002.CrossRefGoogle Scholar
  72. 72.
    T. Abe and B. Sundman. A Description of the Effect of Short Range Ordering in the Compound Energy Formalism. Calphad, 27(4):403–408, 2003.CrossRefGoogle Scholar
  73. 73.
    F. Sommer, Association Model for the Description of the Thermodynamic Functions of Liquid Alloys. I.–Basic Concepts. Zeitschrift Fur Metallkunde 73(2), 72–76 (1982)Google Scholar
  74. 74.
    M. Blander and A.D. Pelton. Thermodynamic Analysis of Binary Liquid Silicates and Prediction of Ternary Solution Properties by Modified Quasichemical Equations. Geochimica et Cosmochimica Acta, 51(1):85–95, 1987.ADSCrossRefGoogle Scholar
  75. 75.
    A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault. The Modified Quasichemical Model I - Binary Solutions. Metallurgical and Materials Transactions B, 31(4):651–659, 2000.CrossRefGoogle Scholar
  76. 76.
    A.D. Pelton and P. Chartrand. The Modified Quasi-Chemical Model: Part II. Multicomponent Solutions. Metallurgical and Materials Transactions A, 32(6):1355–1360, 2001.CrossRefGoogle Scholar
  77. 77.
    A.D. Pelton, P. Chartrand, and G. Eriksson. The Modified Quasi-Chemical Model: Part IV. Two-sublattice Quadruplet Approximation. Metallurgical and Materials Transactions A, 32(6):1409–1416, 2001.CrossRefGoogle Scholar
  78. 78.
    P. Chartrand and A.D. Pelton. The Modified Quasi-Chemical Model: Part III. Two Sublattices. Metallurgical and Materials Transactions A, 32(6):1397–1407, 2001.CrossRefGoogle Scholar
  79. 79.
    M. Hillert, M. Selleby, and B. Sundman. An Attempt to Correct the Quasichemical Model. Acta Mater., 57(17):5237–5244, 2009.CrossRefGoogle Scholar
  80. 80.
    M. Hillert, B. Jansson, B. Sundman, and J. Ågren. A Two-sublattice Model for Molten Solutions with Different Tendency for Ionization. Metallurgical Transactions A, 16(1):261–266, 1985.CrossRefGoogle Scholar
  81. 81.
    M.L. Kapoor, M.G. Froberg, Theoretical Treatment of Activities in Silicate Melts. In Chemical Metallurgy of Iron and Steel: Proceedings of the International Symposium on Metallurgic Chemistry-Applications in Ferrous Metallurgy held in the University of Sheffield, 19th–21st July 1971, pages 17–22, Iron and Steel Institute, London (1973)Google Scholar
  82. 82.
    H. Gaye and J. Welfringer. Modelling of the Thermodynamic Properties of Complex Metallurgical Slags. In H.A. Fine and D.R. Gaskell, editors, Proc. Second International Symposium on Metallurgical Slags and Fluxes, pp 357–375, Warrendale, PA (1984).Google Scholar
  83. 83.
    H. Gaye, J. Lehmann, Modelling of Slag Thermodynamic Properties – From Oxides to Oxisulphides. In: Proceedings of the 5th International Conference on Molten Slags, Fluxes, and Salts ’97: January 5-8, 1997, Sydney, Australia, pages 27–34, Iron and Steel Society, Warrendale, PA (1996)Google Scholar
  84. 84.
    C.H.P. Lupis and J.F. Elliott. Prediction of Enthalpy and Entropy Interaction Coefficients by the Central Atoms Theory. Acta Metallurgica, 15(2):265–276, 1967.CrossRefGoogle Scholar
  85. 85.
    E.-H. Foo and C.H.P. Lupis. The Central Atoms Model of Multicomponent Interstitial Solutions and Its Applications to Carbon and Nitrogen in Iron Alloys. Acta Metallurgica, 21(10):1409–1430, 1973.CrossRefGoogle Scholar
  86. 86.
    J. Lehmann, F. Bonnet, and M. Bobadilla. Thermodynamic Description of Liquid Steels and Metallurgical Slags by a Generalization of the Central Atoms Model. Iron & steel technology, 3(6):115–123, 2006.Google Scholar
  87. 87.
    C. Chen, L. Zhang, and J. Lehmann. Thermodynamic Modelling of Phosphorus in Steelmaking Slags. High Temperature Materials and Processes, 32(3):237–246, 2013.CrossRefGoogle Scholar
  88. 88.
    E.A. Lass, A. Zhu, G.J. Shiflet, and S.J. Poon. A Short-Range Ordering Description of Amorphous Metal Alloys Using the Central Atoms Model. Acta Materialia, 58(16):5460–5470, 2010.CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institut National des Sciences et Techniques NucléaresGif sur YvetteFrance
  2. 2.Thermo-Calc Software ABStockholmSweden
  3. 3.Central South UniversityChangshaChina

Personalised recommendations