Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 597–609 | Cite as

Thermodynamic Assessments of the Ni-Cr-Ti System and Atomic Mobility of Its fcc Phase

  • Jinwan Huang
  • Yang Wang
  • Jingjing Wang
  • Xiao-Gang LuEmail author
  • Lijun Zhang


Thermodynamic assessments have been performed for the Ni-Ti binary and Ni-Cr-Ti ternary system by the CALPHAD method. Combining the experimental and ab initio calculated data on the enthalpies of formation of Ni-Ti compounds, a better description for Ni-Ti phases has been obtained. Based on the new assessments of the binary sub-systems and the recent experimental data on phase equilibria, a reassessment of the Ni-Cr-Ti system was carried out. Apart from the thermodynamic assessments, the interdiffusion coefficients for the fcc phase of the binary Ni-Ti were re-optimized and the ternary Ni-Cr-Ti system were determined experimentally over a temperature range from 1123 to 1273 K employing the diffusion-couple technique. Subsequently, atomic mobility data for the fcc phase of the Ni-Cr-Ti system were assessed and most diffusivity data were satisfactorily described.


ab initio atomic mobility CALPHAD Ni-Cr-Ti thermodynamics 



The authors gratefully acknowledge the financial support from the National Key R&D Program of China (Grant Number: 2017YFB0701502).


  1. 1.
    Y.H. Tan and Y. Du, Isothermal Section at 927 C of Cr-Ni-Ti System, Trans. Nonferrous Met. Soc., 2007, 17, p 711-714 (in Chinese)CrossRefGoogle Scholar
  2. 2.
    J.R. Davis, Properties and Selection Nonferrous Alloys and Special Purpose Materials. Materials Handbook, ASM International, 1990, p 436-441Google Scholar
  3. 3.
    J.A. van Beek, A.A. Kodentsov, and F.J.J. van Loo, ChemInform Abstract: Phase Equilibria in the Ni-Cr-Ti System at 850°C, Alloys Compd., 1998, 279, p 218-223CrossRefGoogle Scholar
  4. 4.
    I. Isomäki, M. Hämäläinen, and M. Gasik, Thermodynamic Assessment of the Ternary Ni-Ti-Cr System, J. Alloy. Compd., 2012, 543, p 12-18CrossRefGoogle Scholar
  5. 5.
    B.J. Lee, On the Stabiliity of Cr Carbides, CALPHAD, 1992, 16(2), p 121-149CrossRefGoogle Scholar
  6. 6.
    T. Tokunaga, K. Hashima, H. Ohtani, and M. Hasebe, Thermodynamic Analysis of the Ni-Si-Ti System Using Thermochemical Properties Determined from Ab Initio, Calculations, Materials Transactions, 2004, 45(5), p 1507-1514CrossRefGoogle Scholar
  7. 7.
    G. Ghosh, Thermodynamic and Kinetic Modeling of the Cr-Ti-V System, Journal of Phase Equilibria, 2002, 23(4), p 310ADSCrossRefGoogle Scholar
  8. 8.
    J.D. Keyzer, G. Caccismani, N. Dupin, and P. Wollants, Thermodynamic Modeling and Optimization of the Fe-Ni-Ti System, CALPHAD, 2009, 33(1), p 109-123CrossRefGoogle Scholar
  9. 9.
    J. Pavlů, J. Vreat’ál, and M. Šob, Thermodynamic Modeling of Laves Phases in the Cr-Hf and Cr-Ti Systems: Reassessment Using First-Principles Results, CALPHAD, 2010, 34(2), p 215-221CrossRefGoogle Scholar
  10. 10.
    N.Q. Zhu, J.C. Li, X.G. Lu, and Y.L. He, Experimental and Computational Study of Diffusion Mobilities for fcc Ni-Cr-Mo Alloys, Metall. Mater. Trans. A, 2015, 46(11), p 5444-5455CrossRefGoogle Scholar
  11. 11.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312CrossRefGoogle Scholar
  12. 12.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425CrossRefGoogle Scholar
  13. 13.
    M. Hillert, Phase Relations in the ZrO2 -Nd2O3 -Y2O3 System: Experimental Study and Advanced Thermodynamic Modeling, J. Alloys Compounds, 2001, 320, p 161-176CrossRefGoogle Scholar
  14. 14.
    A. Borgenstam, A. Engström, L. Höglund, and J. Ågren, DICTRA, A Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib. Diffus., 2000, 21, p 269-280CrossRefGoogle Scholar
  15. 15.
    J.O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72, p 1350-1355ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wang, N.Q. Zhu, H. Wang, and X.G. Lu, Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys, Metall. Mater. Trans. A, 2017, 48, p 943-947Google Scholar
  17. 17.
    J.F. Wang, Y. Wang, N.Q. Zhu, and X.G. Lu, Experimental and Computational Study of Interdiffusion for fcc Ni-Co-W Alloys, J. Phase Equilib. Diffus., 2017, 38, p 37-50CrossRefGoogle Scholar
  18. 18.
    Y. Wang and X.G. Lu, Interdiffusion and Diffusion Mobility for Fcc Ni-Co-Mo Alloys, J. Phase Equilib. Diffus., 2017, 38, p 656-664CrossRefGoogle Scholar
  19. 19.
    J.L. Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, Materials Park, 1987, OH, p. 197–211, 59–68Google Scholar
  20. 20.
    L. Kaufman and H. Nesor, Coupled Phase Diagrams and Themochemical Data for Transition Metal Binary System-II, CALPHAD, 1978, 2(1), p 81-108CrossRefGoogle Scholar
  21. 21.
    P. Bellen, K.C.H. Kumar, and P. Wollants, Thermodynamic Assessment of the Ni-Ti Phase Diagram, Z. Metallkd., 1996, 87, p 972-978Google Scholar
  22. 22.
    W. Tang, B. Sundman, R. Sandström, and C. Qiu, New Modelling of the B2 Phase and its Associated Martensitic Transformation in the Ti-Ni System, Acta material, 1999, 47(12), p 3457-3468CrossRefGoogle Scholar
  23. 23.
    A. Pastural, C. Colinet, M.D. Nguyen, A.T. Paxton, and M. van Schilfgaarde, Electronic Structure and Phase Stability Study in the Ni-Ti System, Phys. Rev., 1995, B52, p 15176-15190ADSCrossRefGoogle Scholar
  24. 24.
    K. Santhy and K.C. Hari Kumar, Thermodynamic Assessment of Mo-Ni-Ti Ternary System by Coupling First-Principle Calculations with CALPHAD Approach, Intermetallics, 2010, 18(9), p 1713-1721CrossRefGoogle Scholar
  25. 25.
    O. Kubaschewski, H. Villa, and W.A. Dench, The Reaction of Titanium Tetrachloride with Hydrogen in Contact with Various Refractories, Trans. Faraday Soc., 1956, 52, p 214-222CrossRefGoogle Scholar
  26. 26.
    J.C. Gachon, M. Notin, and J. Hertz, The Enthalpy of Mixing of the Intermediate Phases in the Systems FeTi, CoTi, and NiTi by Direct Reaction Calorimetry, Thermochim. Acta, 1981, 48, p 155-164CrossRefGoogle Scholar
  27. 27.
    G.A. Levshin and V.I. Alekseev, Thermodynamic Properties of Nickel-Titanium System Alloys, Russ. J. Phys. Chem., 1979, 53, p 437-439Google Scholar
  28. 28.
    P.A. Gomozov, Y.V. Zasypalov, and B.M. Mogutnov, Enthalpies of Formation of Intermetallic Compounds with the CsCl Structure (CoTi, CoZr, CoAl, NiTi), Russ. J. Phys. Chem., 1986, 60, p 1122-1124Google Scholar
  29. 29.
    H.C. Yi and J.J. Moore, Combustion Synthesis of TiNi Intermetallic Compounds Part 1: Determination of Heat of Fusion of TiNi and Heat Capacity of Liquid TiNi, J. Mater. Sci. Lett., 1989, 24, p 3449-3455ADSCrossRefGoogle Scholar
  30. 30.
    Q.T. Guo and O.J. Kleppa, Standard Enthalpies of Formation of Some Alloys Formed Between Group IV Elements and Group VIII, Elements, Determined by Hightemperature Direct Synthesis Calorimetry II. Alloys of (Ti, Zr, Hf) with (Co, Ni), J. Alloys. Compd., 1998, 269, p 181-186CrossRefGoogle Scholar
  31. 31.
    C. C. Jia, K. Ishida and T. Nishizawa, Experimental Methods of Phase Diagram Determination, TMS. Publisher, 1994, PA, p. 31–38Google Scholar
  32. 32.
    D.M. Poole and W. Hume-Rothery, The Equilibrium Diagram of the System Nickel-Titanium, J. Inst. Metals, 1954, 83, p 473-480Google Scholar
  33. 33.
    A. Taylor and R.W. Floyd, The Constitution of Nickel-Rich Alloys of the Nickel-Chromium-Aluminium System, Inst. Metals, 1951, 80, p 577-587Google Scholar
  34. 34.
    Y.A. Bagariatskii and Y.D. Tyapkin, On the Atomic Structure of Solid Solutions of Chromium in Nickel, Z. Neorg Khim, 1958, p. 151–158.Google Scholar
  35. 35.
    G.R. Purdy and J.G. Parr, A Study of the Titanium-Nickel System Between Ti2Ni and TiNi, Trans. AIME, 1961, 221, p 636-639Google Scholar
  36. 36.
    G.F. Bastin and G.D. Rieck, Diffusion in the Titanium-Nickel System: I. Occurrence and Growth of the Various Intermetallic Compounds, Metall. Trans, 1974, 5, p 1817-1826CrossRefGoogle Scholar
  37. 37.
    R. Vogel and H.S. Wallbaum, Das System Eisen‐Nickel‐Nickeltitanid Ni3Ti‐Eisentitanid Fe2 Ti, Arch. Eisenhüttenwes, 1938, 12, p 299-304CrossRefGoogle Scholar
  38. 38.
    H. Margolin, E. Ence, and J.P. Nielsen, The Titanium-nickel Phase Diagram, Trans. AIME, 1953, 197, p 243-247Google Scholar
  39. 39.
    M.K. McQuillan, A Provisional Constitutional Diagram of the Chromium Titanium System, J. Inst. Met., 1951, 80, p 379-390Google Scholar
  40. 40.
    F.B. Cuff, N.J. Grant, and C.F. Floe, Titanium Chromium Phase Diagram, J. Met., 1952, 4, p 848-853Google Scholar
  41. 41.
    R.J. Van Thyne, H.D. Kessler, and M. Hansen, The Systems Titanium Chromium and Titanium-Iron, Trans. Am. Soc. Met., 1952, 44, p 974-989Google Scholar
  42. 42.
    F. Ermanis, P.A. Farrar, and H. Margolin, A Reinvestigation of the Systems Ti-Cr and Ti-V, Trans. Metall. Soc. AIME, 1961, 221, p 904-908Google Scholar
  43. 43.
    V.S. Mikheyev and T.S. Chernova, Solubility of Chromium in a-Titanium and Mechanical Properties of the Binary System Titanium-Chromium, in Titan I Ego Splavy AN SSSR Inst., 1962, p. 68–73Google Scholar
  44. 44.
    V.N. Svechnikov and Y.A. Kocherzhinsky, Consitution Diagram of Chromium Titanium, Probl. Phys. Met. Metall., 1962, 32, p 132-135Google Scholar
  45. 45.
    P.A. Farrar and H. Margolin, A Re-Investigation of the Chromium Rich Region of the Titanium Chromium System, Trans Metall Soc AIME, 1963, 227, p 1342-1345Google Scholar
  46. 46.
    V.N. Svechnikov, M.Y. Teslyuk, A.Y. Kocherzhinsky, V.V. Petkov, and E.V. Dabizha, Three Modifications of TiCr2, Dopov Akad Nauk Ukr RSR, 1970, 32, p 837-842Google Scholar
  47. 47.
    S.A. Minaeva, B.P. Budberg and A.L. Gavze, Phase Structure of Ti-Cr Alloys, in Izv Akad Nauk SSSR Met, 1971Google Scholar
  48. 48.
    A. Taylor, Constitution of Nickel-Rich Quaternary Alloys of the Ni-Cr-Ti-Al System, Trans. AIME, 1956, 206, p 1356-1362Google Scholar
  49. 49.
    J.S. Kirkaldy and D.J. Young, Diffusion in the condensed state, in the Institute of Metals, 1987, London, p. 83–87Google Scholar
  50. 50.
    M. Liu, L.J. Zhang, W.M. Chen, and J.H. Xin, Diffusivities and Atomic Mobilities in fcc_A1 Ni–X (X = Ge, Ti and V) Alloys, CALPHAD, 2013, 41, p 108-118CrossRefGoogle Scholar
  51. 51.
    D. Bergner, Zur diffusion von Hf und Ti in Ni, Kristall Technik, 1972, 7, p 651-656CrossRefGoogle Scholar
  52. 52.
    R.A. Swalin and A. Martin, Solute Diffusion in Nickel-Base Substitutional Solid Solutions, Trans. AIME, 1956, 206, p 567-572Google Scholar
  53. 53.
    S.B. Jung, T. Yamane, Y. Minamino, K. Hirao, H. Araki, and S. SajI, Interdiffusion and Its Size Effect in Nickel Solid Solutions of Ni-Co, Ni-Cr and Ni-Ti Systems, J. Mater. Lett., 1992, 11, p 1333-1337CrossRefGoogle Scholar
  54. 54.
    N. Komai, M. Watanabe, Z. Horita, T. Sano, and M. Nemoto, Analytical Electron Microscopy Study of Ni/Ni–8 mol% Ti Diffusion Couples, Acta Mater., 1998, 46, p 4443-4451CrossRefGoogle Scholar
  55. 55.
    C.E. Campbell, Assessment of the Diffusion Mobilites in the γ’ and B2 Phases in the Ni-Al-Cr System, Acta Mater., 2008, 56(16), p 4277-4290CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jinwan Huang
    • 1
  • Yang Wang
    • 2
  • Jingjing Wang
    • 2
  • Xiao-Gang Lu
    • 1
    • 2
    Email author
  • Lijun Zhang
    • 3
  1. 1.Materials Genome InstituteShanghai UniversityShanghaiChina
  2. 2.School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations