Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 584–591 | Cite as

Revisiting the Phase Stability in Ni-X (X=Mo, Ti, In) Systems Using Ab Initio Calculations

  • Chao Jiang
  • Zi-Kui Liu
Article
  • 178 Downloads

Abstract

In this paper, we report a theoretical prediction of the low-temperature phase diagrams for the Ni-Mo, Ni-Ti and Ni-In binary systems using ab initio evolutionary methodology. Our study uncovers two previously unreported intermetallic compounds that are thermodynamically stable at low temperatures: orthorhombic Ni2Mo with Cmcm symmetry and tetragonal NiTi2 with I4/mmm symmetry. Ni2Mo and NiTi2 will transform from their zero temperature ground state structures into their experimentally observed high temperature polymorphs above a critical temperature of 466 and 912 K, respectively. Finally, our DFT calculations with both PBE and LDA functional indicate that the experimentally observed Ni3In, Ni2In and Ni13In9 structures are all not stable at low temperature. Furthermore, no Ni3In and Ni2In structures that are stable at T = 0 K can be identified by our evolutionary search.

Keywords

ab Initio methods crystal structure intermetallic compound 

Notes

Acknowledgments

DFT calculations are performed using the FALCON supercomputer at Idaho National Laboratory. ZKL is partially supported by the U.S. National Science Foundation Center for Computational Materials Design (Grant No. IIP-1034965).

References

  1. 1.
    A.R. Oganov, J.H. Chen, C. Gatti, Y.Z. Ma, Y.M. Ma, C.W. Glass, Z.X. Liu, T. Yu, O.O. Kurakevych, and V.L. Solozhenko, Ionic High-Pressure Form of Elemental Boron. Nature, 2009, 457, p 863ADSCrossRefGoogle Scholar
  2. 2.
    Y.M. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, and V. Prakapenka, Transparent Dense Sodium. Nature, 2009, 458, p 182ADSCrossRefGoogle Scholar
  3. 3.
    C.J. Pickard and R.J. Needs, High-Pressure Phases of Silane. Phys. Rev. Lett., 2006, 97, p 045504ADSCrossRefGoogle Scholar
  4. 4.
    C. Jiang, Z.J. Lin, and Y.S. Zhao, Thermodynamic and Mechanical Stabilities of Tantalum Nitride. Phys. Rev. Lett., 2009, 103, p 185501ADSCrossRefGoogle Scholar
  5. 5.
    C. Jiang, First-Principles Study of Co3(Al,W) Alloys Using Special Quasi-Random Structures. Scr. Mater., 2008, 59, p 1075CrossRefGoogle Scholar
  6. 6.
    E.A. Lass, M.E. Williams, C.E. Campbell, K.W. Moon, and U.R. Kattner, γ′ Phase Stability and Phase Equilibrium in Ternary Co-Al-W at 900°C. J. Phase Equilibria Diff., 2014, 35, p 711CrossRefGoogle Scholar
  7. 7.
    E.A. Lass, R.D. Grist, and M.E. Williams, Phase Equilibria and Microstructural Evolution in Ternary Co-Al-W Between 750 and 1100°C. J. Phase Equilibria Diff., 2016, 37, p 387CrossRefGoogle Scholar
  8. 8.
    T.M. Pollock and S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power, 2006, 22, p 361CrossRefGoogle Scholar
  9. 9.
    A.R. Oganov and C.W. Glass, Crystal Structure Prediction Using Ab Initio Evolutionary Techniques: Principles and Applications. J. Chem. Phys., 2006, 124, p 244704ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhong, C. Wolverton, Y.A. Chang, and Z.K. Liu, A Combined CALPHAD/First-Principles Remodeling of the Thermodynamics of Al-Sr: Unsuspected Ground State Energies by “Rounding Up the (Un)Usual Suspects”. Acta Mater., 2004, 52, p 2739CrossRefGoogle Scholar
  11. 11.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77, p 3865ADSCrossRefGoogle Scholar
  12. 12.
    G. Kresse and J. Furthmuller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B, 1996, 54, p 11169ADSCrossRefGoogle Scholar
  13. 13.
    S.H. Zhou, Y. Wang, C. Jiang, J.Z. Zhu, L.Q. Chen, and Z.K. Liu, First-Principles Calculations and Thermodynamic Modeling of the Ni-Mo System. Mater. Sci. Eng., A, 2005, 397, p 288CrossRefGoogle Scholar
  14. 14.
    A. van de Walle and G. Ceder, The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics. Rev. Mod. Phys., 2002, 74, p 11ADSCrossRefGoogle Scholar
  15. 15.
    A. van de Walle, M. Asta, and G. Ceder, The Alloy Theoretic Automated Toolkit: A User Guide, Calphad, 2002, 26, p 539CrossRefGoogle Scholar
  16. 16.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM, Metal Park, 1990Google Scholar
  17. 17.
    X.Y. Huang, G.J. Ackland, and K.M. Rabe, Crystal Structures and Shape-Memory Behaviour of NiTi. Nat. Mater., 2003, 2, p 307ADSCrossRefGoogle Scholar
  18. 18.
    G.A. Yurko, J.W. Barton, and J.G. Parr, The Crystal Structure of Ti2Ni. Acta Cryst., 1959, 12, p 909CrossRefGoogle Scholar
  19. 19.
    S. Ramos de Debiaggi, C. Deluque Toro, G.F. Cabeza, and A. Fernández Guillermet, Ab Initio Study of the Cohesive Properties, Electronic Structure and Thermodynamic Stability of the Ni-In and Ni-Sn Intermetallics. J. Alloys Compd., 2013, 576, p 302CrossRefGoogle Scholar
  20. 20.
    J. Schmid, M. Bienzle, F. Sommer, and B. Predel, Thermodynamic Study of Solid and Liquid Ni-In Alloys. Z. Metallkd., 1995, 86, p 877Google Scholar
  21. 21.
    J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys., 2003, 118, p 8207ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Fuels Modeling and SimulationIdaho National LaboratoryIdaho FallsUSA
  2. 2.Department of Materials Science and EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations