Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 549–561 | Cite as

Phase Equilibria of the Ti-Al-Nb System at 1000, 1100 and 1150 °C

  • Lin Li
  • Libin Liu
  • Ligang Zhang
  • Lijun Zeng
  • Yun Zhao
  • Weimin Bai
  • Yurong Jiang
Article
  • 134 Downloads

Abstract

1000, 1100 and 1150 °C isothermal sections of the Ti-Al-Nb system were studied using x-ray diffraction, scanning electron microscopy and electron probe microanalysis. A small island-like region of single β0 is present at 1000, but absent at 1100 and 1150 °C. γ1 is not a stable phase at 1000 and 1150 °C. Three three-phase fields (α2 + β0 + σ, β0 + σ + γ and α2 + β0 + γ) are identified in the 1000 °C isothermal section (30-60 at.% Ti content). The 1100 °C isothermal section is firstly studied completely. It includes six three-phase and thirteen two-phase fields. Two three-phase fields β + α2 + γ and β + σ + γ are identified in the isothermal section (30-60 at.% Ti content) at 1150 °C. These data are helpful to the fabrication of the TiAl and Ti2AlNb intermetallics.

Keywords

intermetallics microstructure phase diagram TiAl alloy 

Notes

Acknowledgments

The work was financially supported by National Key Technologies R&D Program of China (Grant No. 2016YFB0701301), National Natural Science Foundation of China (Grant Numbers 51671218, 51501229). National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000).

References

  1. 1.
    S.H. Kayani and N.-K. Park, Effect of Cr and Nb on the Phase Transformation and Pore Formation of Ti-Al base alloys, J. Alloys Compd., 2017, 708, p 308-315CrossRefGoogle Scholar
  2. 2.
    Y. Shida and H. Anada, Oxidation Behavior of Binary Ti-Al Alloys in High Temperature Air Environment, Mater. Trans. JIM, 1993, 34(3), p 236-242CrossRefGoogle Scholar
  3. 3.
    T.M. Pollock, Alloy Design for Aircraft Engines, Nat. Mater., 2016, 15(8), p 809-815ADSCrossRefGoogle Scholar
  4. 4.
    B.J. de Aragão and F. Ebrahimi, High Temperature Deformation of Nb-Ti-Al Alloys with σ+γ Microstructure, Mater. Sci. Eng. A, 1996, 208(1), p 37-46CrossRefGoogle Scholar
  5. 5.
    G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, and C.T. Liu, Polysynthetic Twinned TiAl Single Crystals for High-Temperature Applications, Nat. Mater., 2016, 15(8), p 876-881ADSCrossRefGoogle Scholar
  6. 6.
    R. Chen, D. Zheng, J. Guo, T. Ma, H. Ding, Y. Su, and H. Fu, A Novel Method for Grain Refinement and Microstructure Modification in TiAl Alloy by Ultrasonic Vibration, Mater. Sci. Eng. A, 2016, 653, p 23-26CrossRefGoogle Scholar
  7. 7.
    S. Valkov, P. Petrov, R. Lazarova, R. Bezdushnyi, and D. Dechev, Formation and Characterization of Al-Ti-Nb Alloys by Electron-Beam Surface Alloying, Appl. Surf. Sci., 2016, 389, p 768-774ADSCrossRefGoogle Scholar
  8. 8.
    M. Yamaguchi, H. Inui, and K. Ito, High-Temperature Structural Intermetallics, Acta Mater., 2000, 48(1), p 307-322CrossRefGoogle Scholar
  9. 9.
    C. Kenel and C. Leinenbach, Influence of Nb and Mo on Microstructure Formation of Rapidly Solidified Ternary Ti-Al-(Nb, Mo) Alloys, Intermetallics, 2016, 69(Supplement C), p 82-89CrossRefGoogle Scholar
  10. 10.
    H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels, Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability, Adv. Eng. Mater., 2008, 10(8), p 707-713CrossRefGoogle Scholar
  11. 11.
    Y.W. Kim, Ordered Intermetallic Alloys, Part III: Gamma Titanium Aluminides, JOM, 1994, 46(7), p 30-39CrossRefGoogle Scholar
  12. 12.
    O. Shuleshova, D. Holland-Moritz, W. Löser, A. Voss, H. Hartmann, U. Hecht, V.T. Witusiewicz, D.M. Herlach, and B. Büchner, In Situ Observations of Solidification Processes in γ-TiAl Alloys by Synchrotron Radiation, Acta Mater., 2010, 58(7), p 2408-2418CrossRefGoogle Scholar
  13. 13.
    D. Hoelzer and F. Ebrahimi, Phase Stability of sigma+beta Microstructures in the Ternary Nb-Ti-Al System, MRS Proc., 1990, 194, p 393CrossRefGoogle Scholar
  14. 14.
    H. Clemens and S. Mayer, Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys, Adv. Eng. Mater., 2013, 15(4), p 191-215CrossRefGoogle Scholar
  15. 15.
    D.M. Dimiduk, Gamma Titanium Aluminide Alloys—An Assessment Within the Competition of Aerospace Structural Materials, Mater. Sci. Eng. A, 1999, 263(2), p 281-288CrossRefGoogle Scholar
  16. 16.
    X. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14(10–11), p 1114-1122CrossRefGoogle Scholar
  17. 17.
    Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, and B.Y. Huang, Design of Powder Metallurgy Titanium Alloys and Composites, Mater. Sci. Eng. A, 2006, 418(1–2), p 25-35CrossRefGoogle Scholar
  18. 18.
    Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, Phase Equilibria in the Ti-Al Binary System, Acta Mater., 2000, 48, p 3113-3123CrossRefGoogle Scholar
  19. 19.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, and T.Y. Velikanova, The Al-B-Nb-Ti System : III. Thermodynamic Re-evaluation of the Constituent Binary System Al-Ti, J. Alloys Compd., 2008, 465(1–2), p 64-77CrossRefGoogle Scholar
  20. 20.
    U.R. Kattner, J.C. Lin, and Y.A. Chang, Thermodynamic Assessment and Calculation of the Ti-Al System, Metall. Trans. A, 1992, 23(8), p 2081-2090CrossRefGoogle Scholar
  21. 21.
    K.C.H. Kumar, P. Wollants, and L. Delaey, Thermodynamic Calculation of Nb-Ti-V Phase Diagram, CALPHAD, 1994, 18(1), p 71-79CrossRefGoogle Scholar
  22. 22.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, and T.Y. Velikanova, The Al-B-Nb-Ti System: II. Thermodynamic Description of the Constituent Ternary System B-Nb-Ti, J. Alloys Compd., 2008, 456(1), p 143-150CrossRefGoogle Scholar
  23. 23.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, and T.Y. Velikanova, The Al-B-Nb-Ti system: IV. Experimental Study and Thermodynamic re-evaluation of the Binary Al-Nb and Ternary Al-Nb-Ti Systems, J. Alloys Compd., 2008, 472(1), p 133-161Google Scholar
  24. 24.
    A. Hellwig, M. Palm, and G. Inden, Phase Equilibria in the Al-Nb-Ti System at hIgh Temperatures, Intermetallics, 1998, 6(2), p 79-94CrossRefGoogle Scholar
  25. 25.
    K.J. Leonard, J.C. Mishurda, and V.K. Vasudevan, Phase Equilibria at 1100 C in the Nb-Ti-Al System, Mater. Sci. Eng. A, 2002, s329–331(01), p 282-288CrossRefGoogle Scholar
  26. 26.
    G.L. Chen, X.T. Wang, K.Q. Ni, S.M. Hao, J.X. Cao, J.J. Ding, and X. Zhang, Investigation on the 1000, 1150 and 1400 °C Isothermal Section of the Ti-Al-Nb System, Intermetallics, 1996, 4(1), p 13-22CrossRefGoogle Scholar
  27. 27.
    J.J. Ding and S.M. Hao, Reply to the “Comment on ‘Investigation on the 1000, 1150 and 1400 °C Isothermal Section of the Ti-Al-Nb System’”—Part II. MODIFICATION of 1000 and 1150 °C Isothermal Sections of the Ti-Al-Nb System, Intermetallics, 1998, 6(4), p 329-334CrossRefGoogle Scholar
  28. 28.
    T.J. Jewett, Comment on ‘Investigation on the 1000, 1150 and 1400 °C iso th ermal sect ion of the Ti-Al-Nb syst em’, Intermetallics, 1997, 5(2), p 157-159CrossRefGoogle Scholar
  29. 29.
    D.M. Cupid, O. Fabrichnaya, O. Rios, F. Ebrahimi, and H.J. Seifert, Thermodynamic r e-assessment of the Ti-Al-Nb sys tem, Int. J. Mater. Res., 2009, 100(2), p 218-233CrossRefGoogle Scholar
  30. 30.
    C. Servant and I. Ansara, Thermodynamic assessm ent of the Al-Nb-Ti syste m, Ber. Bunsenges. Phys. Chem., 1998, 102(9), p 1189-1205CrossRefGoogle Scholar
  31. 31.
    C. Servant and I. Ansara, Thermodynamic Modelling of the Order–Disorder Transformation of the Orthorhombic Phase of the Al-Nb-Ti System, CALPHAD, 2001, 25(4), p 509-525CrossRefGoogle Scholar
  32. 32.
    Z. Zhu, Y. Du, L. Zhang, H. Chen, H. Xu, C. Tang, Z. Zhu, Y. Du, and C. Tang, Experimental Identification of the Degenerated Equilibrium and Thermodynamic Modeling in the Al-Nb System, J. Alloys Compd., 2008, 460(1), p 632-638CrossRefGoogle Scholar
  33. 33.
    U.R. Kattner and W.J. Boettinger, Thermodynamic Calculation of the Ternary Ti-Al-Nb System, Mater. Sci. Eng. A, 1992, 152(1), p 9-17CrossRefGoogle Scholar
  34. 34.
    J.C. Zhao, Reliability of the Diffusion-Multiple Approach for Phase Diagram Mapping, J. Mater. Sci., 2004, 39(12), p 3913-3925ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations