Experimental Investigation of Phase Equilibria in Zr-Ni-Pt System

  • J. Lu
  • X. M. Huang
  • K. Hu
  • H. S. Liu
  • G. M. Cai
  • Z. P. Jin
Article
  • 8 Downloads

Abstract

Phase equilibria in Zr-Ni-Pt ternary system have been experimentally determined through diffusion triple and alloy sampling approaches. Based on the results of Electron Probe Microanalysis (EPMA) and x-ray diffraction (XRD), isothermal sections of this system were constructed at 1073 and 1173 K. A new ternary phase denoted as Zr4(Pt,Ni)3 was detected with composition ranging from 2.5 to 29.7 at.% Ni and 40.7 to 12.7 at.% Pt at 1073 K while 2.2 to 25.1 at.% Ni and 40.9 to 17.5 at.% Pt at 1173 K, respectively. Three continuous solutions are formed between binary compounds ZrNi and ZrPt, Zr7Ni10 and Zr7Pt10, ZrNi3 and ZrPt3, and large ternary solubility of Ni in ZrPt4, and of Pt in Zr2Ni and ZrNi5, were observed.

Keywords

diffusion triples phase equilibria Zr-Ni-Pt 

Notes

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701404) and the Major State Basic Research Development Program of China (Grant No. 2014CB6644002).

References

  1. 1.
    A. Inoue, Bulk Glassy Alloys: Historical Development and Current Research, Engineering, 2015, 1, p 185-191CrossRefGoogle Scholar
  2. 2.
    A. Inoue and A. Takeuchi, Recent Development and Application Products of Bulk Glassy Alloys, Acta Mater., 2011, 59, p 2243-2267CrossRefGoogle Scholar
  3. 3.
    J.L. Du, B. Wen, R. Melnik, and Y. Kawazoe, First-Principles Studies on Structural Mechanical Thermodynamic and Electronic Properties of Ni-Zr Intermetallic Compounds, Intermetallics, 2014, 54, p 110-119CrossRefGoogle Scholar
  4. 4.
    Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, G.Q. Xie, K. Fujita, and A. Inoue, Glass-Forming Ability and Corrosion Resistance of Zr-Based Zr-Ni-Al Bulk Metallic Glasses, J. Alloys Compd., 2012, 536, p 117-121CrossRefGoogle Scholar
  5. 5.
    L. Mihailov, T. Spassov, and M. Bojinov, Effect of Microstructure on the Electrocatalytic Activity for Hydrogen Evolution of Amorphous and Nanocrystalline Ni-Zr Alloys, Int. J. Hydrogen Energ., 2012, 14, p 10499-10506CrossRefGoogle Scholar
  6. 6.
    M.D. Dolan, S. Hara, N.C. Dave, K. Haraya, M. Ishitsuka, A.Y. Llyushechkin, K. Kita, K.G. Mclennan, L.D. Morpeth, and M. Mukaida, Thermal Stability, Glass-Forming Ability and Hydrogen Permeability of Amorphous Ni64Zr36-xMx (M=Ti, Nb, Mo, Hf, Ta or W) Membranes, Sep. Purif. Technol., 2009, 65, p 298-304CrossRefGoogle Scholar
  7. 7.
    T. Henning, W. Horst, M. Siegfried, G. Thomas, and E. Jurgen, Synthesis and Characterization of Amorphous Ni-Zr Thin Films, Thin Solid Films, 2014, 30, p 48-52Google Scholar
  8. 8.
    A. Inoue, X.M. Wang, and W. Zhang, Developments and Applications of Bulk Metallic Glasses, Rev. Adv. Mater. Sci., 2008, 18, p 1-9Google Scholar
  9. 9.
    Z.H. Chu, G.Y. Yuan, H. Kato, G.Q. Xie, and D.R. Yan, The Effect of Matrix Fracture Toughness on the Plastic Deformation of the Metallic Glassy Composite, J. Alloys Compd., 2014, 5, p 10-15CrossRefGoogle Scholar
  10. 10.
    G.Y. Zhang, H. Zhang, Z.Q. Hu, R. Lin, and H.F. Zhang, Effects of Alloying Elements on the Crystallization Behavior of Zr-Base Amorphous Alloys, Rare Metal Mat. Eng., 2005, 34, p 389-392Google Scholar
  11. 11.
    P. Nash and M.F. Singleton, The Ni-Pt (Nickel-Platinum) System, Bull. Alloy Phase Diagr., 1989, 10, p 258-262CrossRefGoogle Scholar
  12. 12.
    X.G. Lu, B. Sundman, and J. Agren, Thermodynamic Assessments of the Ni-Pt and Al-Ni-Pt Systems, Calphad, 2009, 33, p 450-456CrossRefGoogle Scholar
  13. 13.
    P. Nash and C.S. Jayanth, The Ni-Zr (Nickel-Zirconium) System, Bull. Alloy Phase Diagr., 1984, 5, p 144-148CrossRefGoogle Scholar
  14. 14.
    G. Ghosh, Thermodynamics and Kinetics of Stable and Metastable Phases in the Ni-Zr System, J. Mater. Res., 1994, 3, p 598-616ADSCrossRefGoogle Scholar
  15. 15.
    A.I. Zaitsev, N.E. Zaitseva, E.K. Shakhpazov, and A.A. Kodentsov, Thermodynamic Properties and Phase Equilibria in the Nickel-Zirconium System the Liquid to Amorphous State Transition, Phys. Chem. Chem. Phys., 2002, 4, p 6047-6058CrossRefGoogle Scholar
  16. 16.
    T. Abe, H. Onodera, M. Shimono, and M. Ode, Thermodynamic Modeling of the Undercooled Liquid in the Ni-Zr System, Mater. Trans., 2005, 46, p 2838-2843CrossRefGoogle Scholar
  17. 17.
    N. Wang, C. Li, Z. Du, and F. Wang, Experimental Study and Thermodynamic Re-assessment of the Ni-Zr System, Calphad, 2007, 31, p 413-421CrossRefGoogle Scholar
  18. 18.
    H. Okamoto, Ni-Zr(Nickel-Zirconium), J. Phase Equilib. Diff., 2007, 4, p 409MathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Kosorukova, V. Ivanchenko, G. Firstov, and H. Noel, Experimental Reinvestigation of the Ni-Zr System, Solid State Phenom., 2013, 194, p 14-20CrossRefGoogle Scholar
  20. 20.
    P. Sauerschnig, A. Grytsiv, J. Vrestal, V.V. Romaka, B. Smetana, G. Giester, E. Bauer, and P. Rogl, On the Constitution and Thermodynamic Modelling of the System Zr-Ni-Sn, J. Alloys Compd., 2018, 742, p 1058-1082CrossRefGoogle Scholar
  21. 21.
    J.K. Stalick and R.M. Waterstrat, The Zirconium–Platinum Phase Diagram, J. Alloys Compd., 2007, 430, p 123-131CrossRefGoogle Scholar
  22. 22.
    E.G. Kendal and C. Hays, The Zirconium-Platinum Alloy System, Trans. Metall. Soc. AIME, 1961, 221, p 445-450Google Scholar
  23. 23.
    A.S. Darling and G.L. Selman, Platinum and the Refractory Oxides, Platin. Met. Rev, 1970, 14, p 124-126Google Scholar
  24. 24.
    E. Savitsky and V. Polyakova, Physical metallurgy of platinum metals, Mir Publisher, Moscow, 1978Google Scholar
  25. 25.
    P.J. Meschter and W.L. Worrell, An Investigation of High Temperature Thermodynamic Properties in the Pt-Zr and Pt-Hf System, Metall. Mater. Trans. A, 1977, 8, p 503-508ADSCrossRefGoogle Scholar
  26. 26.
    G.B. Fairbank and C.J. Humphreys, Ultra-High Temperature Intermetallics for the Third Millennium, Intermetallics, 2000, 8, p 1091-1100CrossRefGoogle Scholar
  27. 27.
    P.R. Alonso and D.E. Arias, The Zr-Rich Zone in the Zr-Pt System, Scripta Mater., 2001, 44, p 429-433CrossRefGoogle Scholar
  28. 28.
    I.R. Harris, M. Norman, and A.W. Bryant, A Study of Some Palladium-Indium, Platinum-Indium and Platinum-Tin Alloys, J. Less-Comm. Met., 1968, 16, p 427-440CrossRefGoogle Scholar
  29. 29.
    S. Gupta, D.J. Sordelet, and J.D. Corbett, Structural and Compositional Investigations of Zr4Pt2O: A Filled-Cubic Ti2Ni-Type Phase, J. Solid State Chem., 2009, 182, p 1708-1712ADSCrossRefGoogle Scholar
  30. 30.
    J.K. Stalick, L.A. Bendersky, and R.M. Waterstrat, One-Dimensional Disorder in Zr9M11 (M=Ni, Pd, Pt) and Low-Temperature Atomic Mobility in Zr9Ni11, J. Phys. Condens. Matter, 2008, 20, p 1-10CrossRefGoogle Scholar
  31. 31.
    H.S. Liu, Y.M. Wang, L.G. Zhang, Q. Chen, F. Zheng, and Z.P. Jin, Determination of Phase Relations in the Co-Cu-Ti System by the Diffusion Triple Technique, J. Mater. Res., 2006, 21, p 2493-2503ADSCrossRefGoogle Scholar
  32. 32.
    Z.P. Jin, A Study of the Range of Stability of Sigma Phase in Some Ternary Systems, Scand. J. Metall., 1981, 10, p 279-287Google Scholar
  33. 33.
    J.C. Zhao, Phase digram determination using diffusion multiples, Elsevier, Methods for phase diagram determination, 2007, p 246-273CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. Lu
    • 1
  • X. M. Huang
    • 1
  • K. Hu
    • 1
  • H. S. Liu
    • 1
  • G. M. Cai
    • 1
  • Z. P. Jin
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangsha CityPeople’s Republic of China

Personalised recommendations