Micromechanisms of Failure and Damage Evolution in Low-Thickness Composite Laminates Under Tensile Loading

  • M. NaderiEmail author
  • N. Iyyer
  • K. Chandrashekhara
Technical Article---Peer-Reviewed


In this work, failure mechanisms and damage evolution in low-thickness composite laminates are numerically simulated. The effect of thinning ply on the strength and damage evolution of composite laminates is investigated. Micromechanical modeling is performed to study damage initiation and propagation mechanisms and ply thickness or in situ effect in thin-ply carbon fiber-reinforced laminate under transverse tension loading. Two different sets of models are examined. The first set of the thin-ply laminate models contains a representative volume element (RVE) of 90° lamina constrained between two homogenized 0° plies. Thicknesses of models with embedded 90° lamina were 30, 60, 90 and 120 μm. In the second set, two models with 30 and 90 μm of 90° thin ply as the outer layers with embedded homogenized 0° layer are considered. Micromechanical analysis is combined with augmented finite element method to provide high-fidelity results of damage evolution. Random fibers’ arrangement and interface toughness and strength normal distribution are considered to capture the composite stochastic behavior. It is shown that the damage initiation and propagation locations are affected by the thickness of 90° lamina and distributions of fracture properties within the RVE.


Micromechanics Thin-ply laminate Finite element modeling Damage evolution in situ effect 



This work is funded by NASA with contract No. STTR T12.01, 80NSSC18P2118.


  1. 1.
    P.P. Camanho, C.G. Dávila, S.T. Pinho, L. Iannucci, P. Robinson, Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. A Appl. Sci. Manuf. 37(2), 165–176 (2006)CrossRefGoogle Scholar
  2. 2.
    K. Kawabe, New carbon tow-spread technology and applications to advanced composite materials. SAMPE J. 45(2), 6–17 (2009)Google Scholar
  3. 3.
    K. Kawabe, T. Matsuo, Z.-I. Maekawa, New technology for opening various reinforcing fiber tows. J.-Soc. Mater. Sci. Jpn. 47, 727–734 (1998)CrossRefGoogle Scholar
  4. 4.
    S. Sihn, R.Y. Kim, K. Kawabe, S.W. Tsai, Experimental studies of thin-ply laminated composites. Compos. Sci. Technol. 67(6), 996–1008 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Arteiro, G. Catalanotti, J. Xavier, P. Camanho, Notched response of non-crimp fabric thin-ply laminates. Compos. Sci. Technol. 79, 97–114 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Yokozeki, A. Kuroda, A. Yoshimura, T. Ogasawara, T. Aoki, Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings. Compos. Struct. 93(1), 49–57 (2010)CrossRefGoogle Scholar
  7. 7.
    T. Yokozeki, Y. Aoki, T. Ogasawara, Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates. Compos. Struct. 82(3), 382–389 (2008)CrossRefGoogle Scholar
  8. 8.
    J.-B. Moon, M.-G. Kim, C.-G. Kim, S. Bhowmik, Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply. Compos. A Appl. Sci. Manuf. 42(6), 694–701 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, C. Dransfeld, Thin ply composites: experimental characterization and modeling of size-effects. Compos. Sci. Technol. 101, 121–132 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Saito, H. Takeuchi, I. Kimpara, Experimental evaluation of the damage growth restraining in 90 layer of thin-ply CFRP cross-ply laminates. Adv. Compos. Mater 21(1), 57–66 (2012)Google Scholar
  11. 11.
    A. Arteiro, G. Catalanotti, J. Xavier, P. Camanho, Large damage capability of non-crimp fabric thin-ply laminates. Compos. A Appl. Sci. Manuf. 63, 110–122 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Guillamet, A. Turon, J. Costa, J. Renart, P. Linde, J. Mayugo, Damage occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial loading. Compos. Sci. Technol. 98, 44–50 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Fuller, M. Wisnom, Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates. Compos. A Appl. Sci. Manuf. 69, 64–71 (2015)CrossRefGoogle Scholar
  14. 14.
    H.M. EL-Dessouky, C.A. Lawrence, Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology. Compos. Part B Eng. 50, 91–97 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Sebaey, J. Costa, P. Maimí, Y. Batista, N. Blanco, J. Mayugo, Measurement of the in situ transverse tensile strength of composite plies by means of the real time monitoring of microcracking. Compos. B Eng. 65, 40–46 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Sebaey, E. Mahdi, Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites. Compos. A Appl. Sci. Manuf. 86, 31–38 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Cugnoni, R. Amacher, S. Kohler, J. Brunner, E. Kramer, C. Dransfeld, W. Smith, K. Scobbie, L. Sorensen, J. Botsis, Towards aerospace grade thin-ply composites: effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance. Compos. Sci. Technol. 168, 467–477 (2018)CrossRefGoogle Scholar
  18. 18.
    I. García, J. Justo, A. Simon, V. Mantič, Experimental study of the size effect on transverse cracking in cross-ply laminates and comparison with the main theoretical models. Mech. Mater. 128, 24–37 (2019)CrossRefGoogle Scholar
  19. 19.
    H. Saito, H. Takeuchi, I. Kimpara, A study of crack suppression mechanism of thin-ply carbon-fiber-reinforced polymer laminate with mesoscopic numerical simulation. J. Compos. Mater. 48(17), 2085–2096 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Arteiro, G. Catalanotti, A. Melro, P. Linde, P. Camanho, Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos. Struct. 116, 827–840 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Arteiro, G. Catalanotti, A. Melro, P. Linde, P. Camanho, Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites. Compos. A Appl. Sci. Manuf. 79, 127–137 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Naderi, J. Jung, Q. Yang, A three dimensional augmented finite element for modeling arbitrary cracking in solids. Int. J. Fract. 197(2), 147–168 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Naderi, N. Iyyer, 3D modeling of arbitrary cracking in solids using augmented finite element method. Compos. Struct. 160, 220–231 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Naderi, N. Apetre, N. Iyyer, Effect of interface properties on transverse tensile response of fiber-reinforced composites: three-dimensional micromechanical modeling. J. Compos. Mater. 51(21), 2963–2977 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Liu, Q. Yang, S. Mohammadizadeh, X. Su, An efficient augmented finite element method for arbitrary cracking and crack interaction in solids. Int. J. Numer. Meth. Eng. 99(6), 438–468 (2014)CrossRefGoogle Scholar
  26. 26.
    N. Moës, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)CrossRefGoogle Scholar
  27. 27.
    W. Liu, Q. Yang, S. Mohammadizadeh, X. Su, D. Ling, An accurate and efficient augmented finite element method for arbitrary crack interactions. J. Appl. Mech. 80(4), 041033 (2013)CrossRefGoogle Scholar
  28. 28.
    D. Dias-da-Costa, J. Alfaiate, L. Sluys, P. Areias, E. Júlio, An embedded formulation with conforming finite elements to capture strong discontinuities. Int. J. Numer. Meth. Eng. 93(2), 224–244 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Linder, F. Armero, Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int. J. Numer. Meth. Eng. 72(12), 1391–1433 (2007)CrossRefGoogle Scholar
  30. 30.
    D. Dias-da-Costa, J. Alfaiate, L. Sluys, E. Júlio, Towards a generalization of a discrete strong discontinuity approach. Comput. Methods Appl. Mech. Eng. 198(47), 3670–3681 (2009)CrossRefGoogle Scholar
  31. 31.
    C.R. Cater, Multiscale modeling of composite laminates with free edge effects (Michigan State University, Lansing, 2015)Google Scholar
  32. 32.
    D. Pulungan, G. Lubineau, A. Yudhanto, R. Yaldiz, W. Schijve, Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool. Int. J. Solids Struct. 117, 177–190 (2017)CrossRefGoogle Scholar
  33. 33.
    D. Trias, J. Costa, A. Turon, J. Hurtado, Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater. 54(13), 3471–3484 (2006)CrossRefGoogle Scholar
  34. 34.
    E.J. Barbero, Finite element analysis of composite materials using AbaqusTM (CRC Press, Boca Raton, 2013)CrossRefGoogle Scholar
  35. 35.
    A. Kaddour, M. Hinton, Input data for test cases used in benchmarking triaxial failure theories of composites. J. Compos. Mater. 46(19–20), 2295–2312 (2012)CrossRefGoogle Scholar
  36. 36.
    T. Vaughan, C. McCarthy, Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 71(3), 388–396 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Varna, L.A. Berglund, M. Ericson, Transverse single-fibre test for interfacial debonding in composites: 2. Modelling. Compos. Part A Appl. Sci. Manuf. 28(4), 317–326 (1997)CrossRefGoogle Scholar
  38. 38.
    H. Zhang, M. Ericson, J. Varna, L.A. Berglund, Transverse single-fibre test for interfacial debonding in composites: 1. Experimental observations. Compos. Part A Appl. Sci. Manuf. 28(4), 309–315 (1997)CrossRefGoogle Scholar
  39. 39.
    A. Arteiro, G. Catalanotti, J. Reinoso, P. Linde, P.P. Camanho, Simulation of the mechanical response of thin-ply composites: from computational micro-mechanics to structural analysis. Arch. Comput. Methods Eng. 26(5), 1445–1487 (2019)CrossRefGoogle Scholar
  40. 40.
    T. Hobbiebrunken, M. Hojo, T. Adachi, C. De Jong, B. Fiedler, Evaluation of interfacial strength in CF/epoxies using FEM and in situ experiments. Compos. A Appl. Sci. Manuf. 37(12), 2248–2256 (2006)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Technical Data Analysis, Inc. (TDA)Falls ChurchUSA
  2. 2.Department of Mechanical and Aerospace EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations