Advertisement

Journal of Failure Analysis and Prevention

, Volume 19, Issue 4, pp 1127–1134 | Cite as

Designing Risk-Minimized Layout for Hazardous Utilities in Chemical Process Industries Using the New Methodology RIDIMPUS

  • A. Basheer
  • Tasneem AbbasiEmail author
  • S. M. Tauseef
  • S. A. Abbasi
Technical Article---Peer-Reviewed

Abstract

We have recently proposed in this journal a new methodology ‘Risk and Distance Minimization in Process industry Units Siting’ (RIDIMPUS) (J Fail Anal Prev 18:83–91, 2018). The methodology has been developed for siting hazardous utilities within the periphery of a chemical process industry in such a manner that the inter-utility distance is minimized while also minimizing the risk of accidents due to those hazardous utilities. In this follow-up report, we present a case study which demonstrates the applicability of RIDIMPUS and validates its efficacy.

Keywords

Risk minimization Inter-utility distances Fire Explosion RIDIMPUS 

Notes

Acknowledgments

SAA thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Emeritus Scientist grant (21(1034)/16/EMR-II).

References

  1. 1.
    T. Abbasi, H. Pasman, S.A. Abbasi, A scheme for the classification of explosions in the chemical process industry. J. Hazard. Mater. 174, 270–280 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Abbasi, S. A. Abbasi, Decarbonization of fossil fuels as a strategy to control global warming. Renew. Sust. Energ. Rev. 15, 1828–1834 (2011)CrossRefGoogle Scholar
  3. 3.
    F.I. Khan, S.A. Abbasi, Techniques and Methodologies for Risk Analysis in Chemical Process Industries (Discovery Publishing House, New Delhi, 1998), p. ix + 364Google Scholar
  4. 4.
    F.I. Khan, S.A. Abbasi, DOMIEFECT: (DoMIno eFFECT) a user-friendly software for domino effect-analysis. Environ. Model Softw. 13, 163–177 (1998)CrossRefGoogle Scholar
  5. 5.
    F.I. Khan, S.A. Abbasi, Models for domino effect analysis in process industries. Process Saf. Prog. 17, 107–123 (1998)CrossRefGoogle Scholar
  6. 6.
    F.I. Khan, S.A. Abbasi, Multivariate hazard identification and ranking system. Process Saf. Prog. 17, 157–170 (1998)CrossRefGoogle Scholar
  7. 7.
    F.I. Khan, S.A. Abbasi, Accident hazard index; A multi-attribute method for process industry hazard rating. Process Saf. Environ. Prot. 75, 217–224 (1997)CrossRefGoogle Scholar
  8. 8.
    F.I. Khan, S.A. Abbasi, OptHAZOP—an effective and optimal methodology for conducting HAZOP, study. J. Loss Prev. Process Ind. 10, 191–204 (1997)CrossRefGoogle Scholar
  9. 9.
    F.I. Khan, S.A. Abbasi, TOPHAZOP: a knowledge—based software. J. Loss Prev. Process Ind. (Elsevier) 10, 333–343 (1997)CrossRefGoogle Scholar
  10. 10.
    F.I. Khan, S.A. Abbasi, Assessment of risks posed by chemical industries—application of a new computer automated tool MAXCRED-III. J. Loss Prev. Process Ind. 12, 455–469 (1999)CrossRefGoogle Scholar
  11. 11.
    F.I. Khan, S.A. Abbasi, The worst chemical industry accident of 1990s: what happened and what might have been—a quantitative study. Process Saf. Prog. 18, 135–145 (1999)CrossRefGoogle Scholar
  12. 12.
    F.I. Khan, S.A. Abbasi, Estimation of probabilities and likely consequences of a chain of accidents (domino effect) in Manali Industrial Complex. J. Clean. Prod. 9, 493–508 (2001)CrossRefGoogle Scholar
  13. 13.
    F.I. Khan, S.A. Abbasi, An assessment of the likelihood of occurrence, and the damage potential of domino effect in a typical cluster of industries. J. Loss Prev. Process Ind. 14, 283–306 (2001)CrossRefGoogle Scholar
  14. 14.
    F.I. Khan, S.A. Abbasi, SWEHI a new user-friendly tool for swift yet comprehensive hazard identification and safety evaluation. Trans IChemE (UK) 79(B), 65–80 (2001)CrossRefGoogle Scholar
  15. 15.
    F.I. Khan, S.A. Abbasi, A new methodology for safety management: SCAP. J. Hazard. Mater. A87, 23–56 (2001)CrossRefGoogle Scholar
  16. 16.
    F.I. Khan, S.A. Abbasi, A criteria for developing credible accident scenarios for risk assessment. J. Loss Prev. Process Ind. 15, 467–475 (2002)CrossRefGoogle Scholar
  17. 17.
    T. Abbasi, S.A. Abbasi, The expertise and the practice of loss prevention in the Indian process industry. Process Saf. Environ. Prot. 83(B5), 413–420 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Abbasi, S.A. Abbasi, The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, control. J. Hazard. Mater. 141, 489–519 (2007)CrossRefGoogle Scholar
  19. 19.
    T. Abbasi, S.A. Abbasi, Accidental risk of superheated liquids and a framework for predicting the superheat limit. J. Loss Prev. Process Ind. 20, 165–181 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Abbasi, S.A. Abbasi, Dust explosions: cases, causes, consequence, control. J. Hazard. Mater. 140, 7–44 (2007)CrossRefGoogle Scholar
  21. 21.
    T. Abbasi, S.A. Abbasi, The boiling liquid expanding vapour explosion (BLEVE) is fifty… and lives on! J. Loss Prev. Process Ind. 21, 485–487 (2008)CrossRefGoogle Scholar
  22. 22.
    S.M. Tauseef, T. Abbasi, S.A. Abbasi, Risks of fire and explosion associated with the increasing use of liquefied petroleum gas (LPG). J. Fail. Anal. Prev. 10(4), 322–333 (2010)CrossRefGoogle Scholar
  23. 23.
    S.M. Tauseef, T. Abbasi, S.A. Abbasi, Development of a new chemical process-industry accident database to assist in past accident analysis. J. Loss Prev. Process Ind. 24, 426–431 (2011)CrossRefGoogle Scholar
  24. 24.
    S.M. Tauseef, D. Rashtchian, S.A. Abbasi, A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD). J. Loss Prev. Process Ind. 24, 638–647 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Vasanth, S.M. Tauseef, T. Abbasi, S.A. Abbasi, Assessment of four turbulence models in simulation of large-scale pool fires in the presence of wind using computational fluid dynamics. J. Less Prev. Process Ind. 26, 1071–1084 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Abbasi, S. Gajalakshmi, S.A. Abbasi, Towards modeling and design of vermicomposting systems: mechanisms of composting/vermicomposting and their implications. Indian J. Biotech. 8, 177–182 (2009)Google Scholar
  27. 27.
    B. Abdolhamidzadeh, T. Abbasi, D. Rashtchian, S.A. Abbasi, A new method for assessing domino effect in chemical process industry. J. Hazard. Mater. 182, 416–426 (2010)CrossRefGoogle Scholar
  28. 28.
    B. Abdolhamidzadeh, D. Rashtchian, T. Abbasi, S.A. Abbasi, Domino effect in process-industry accidents—an inventory of past events and identification of some patterns. J. Loss Prev. Process Ind. 24(5), 575–593 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Basheer, S.M. Tauseef, T. Abbasi, S.A. Abbasi, A new method for siting hazardous units in chemical process facilities which minimizes risk at least cost: RIDIMPUS. J. Fail. Anal. Prev. (2018).  https://doi.org/10.1007/s11668-018-0385-9 Google Scholar
  30. 30.
    S. Jung, D. Ng, C.D. Laird, M.S. Mannan, A new approach for facility siting using mapping risks on a plant grid area and optimization. J. Loss Prev. Process Ind. 23(6), 824–830 (2010)CrossRefGoogle Scholar
  31. 31.
    N. Medina-Herrera, A. Jiménez-Gutiérrez, I.E. Grossmann, A mathematical programming model for optimal layout considering quantitative risk analysis. Comput. Chem. Eng. 68, 165–181 (2014)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. Basheer
    • 1
  • Tasneem Abbasi
    • 1
    Email author
  • S. M. Tauseef
    • 2
  • S. A. Abbasi
    • 1
  1. 1.Centre for Pollution Control and Environmental EngineeringPondicherry UniversityChinakalapet, PuducherryIndia
  2. 2.Department of Health, Safety, Environment and Civil EngineeringUniversity of Petroleum and Energy StudiesDehradunIndia

Personalised recommendations