Advertisement

Journal of Failure Analysis and Prevention

, Volume 19, Issue 4, pp 1043–1054 | Cite as

A Case Study on the Use of Bayesian Inference in Fracture Mechanics Models for Inspection Planning

  • Tiago RibeiroEmail author
  • Luís Borges
  • Constança Rigueiro
Technical Article---Peer-Reviewed
  • 27 Downloads

Abstract

Combining fracture mechanics models for bidirectional crack growth with a Bayesian inference approach for taking into account the information acquired with structural health monitoring techniques is proposed as an analysis method for remaining fatigue life evaluation and inspection planning for fixed ocean structures. After providing a background for the proposed probabilistic analysis, as well as discussing the fundamental hypotheses and options, this paper exemplifies the method application to real data, from a case study. The method steps encompass global spectral fatigue analyses, a simplified probabilistic fatigue analysis, a deterministic fatigue analysis and a probabilistic fatigue analysis, including numerical experimentation with the Monte Carlo method.

Keywords

Inspection planning Structural health monitoring Bayesian inference Fracture mechanics Crack growth 

Notes

References

  1. 1.
    F. Ahmadzadeh, J. Lundberg, Remaining useful life estimation: review. Int J Syst Assur Eng Manag 5, 461–474 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Bloch, J. Sorensen, M. Faber, Simplified approach to inspection planning, in 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability (2015)Google Scholar
  3. 3.
    D. Bowness, M. Lee, Prediction of Weld Toe Magnification Factors for Semi-elliptical Cracks in T-but joints. International Journal of Fatigue 22(5), 369–387 (2000)CrossRefGoogle Scholar
  4. 4.
    S. Breivik, Evaluation of fatigue in single sided X – joint welds on Oseberg UWP (Universitetet i Stavenger, Stavenger, 2016)Google Scholar
  5. 5.
    Coppe A., Haftka R., Kim N.; Least squares-filtered Bayesian updating for remaining useful life estimation, in American Institute of Aeronautics and Astronautics (2014)Google Scholar
  6. 6.
    A. Coppe, M. Pais, R. Haftka, N. Kim, Using a Simple Crack Growth Model in Predicting Remaining Useful Life. Journal of Aircraft 49(6), 1965–1973 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Correia, S. Blason, A. Jesus, A. Canteli, P. Moreira, P. Tavares, Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Engineering Failure Analysis 69, 15–28 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Correia, An integral probabilistic approach for fatigue lifetime prediction of mechanical and structural components, in Doctoral Thesis in Civil Engineering, Faculty of Engineering of the University of Porto, Porto (2014)Google Scholar
  9. 9.
    Det Norske Veritas GL, DNVGL-RP-C210 – Probabilistic Methods for Planning of Inspection for fatigue Cracks of Offshore Structures (DNV GL, Oslo, 2015)Google Scholar
  10. 10.
    Det Norske Veritas GL, DNVGL-RP-0005 – Fatigue Design of Offshore Steel Structures (DNV GL, Oslo, 2015)Google Scholar
  11. 11.
    J. Goyet, D. Straub, M. Faber, Risk-based inspection planning of offshore installations, vol. 3 (Structural Engineering International, Zürich, 2001)Google Scholar
  12. 12.
    J. Goyet, D. Straub, M. Faber, Risk based inspection planning. Revue Française de Génie Civil 6, 3 (2002)Google Scholar
  13. 13.
    L. Held, D. Bové, Applied Statistical Inference: Likelihood and Bayes (Springer-Verlag, Berlin Heidelberg, 2014)CrossRefGoogle Scholar
  14. 14.
    J. Karandikar, N. Kim, T. Schmitz, Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference. Engineering Fracture Mechanics 96, 588–605 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Kim, D. Frangopol, Decision making for probabilistic fatigue inspection planning based on multi-objective optimization. International Journal of Fatigue 111, 356–368 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Lassen, N. Recho, Risk based inspection planning for fatigue damage in offshore steel structures, in Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland, Canada (2015)Google Scholar
  17. 17.
    T. Lassen, Risk based fatigue inspection planning – state of the art. Procedia Engineering 66, 489–499 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Lemaire, Structural Reliability, 1st edn. (Wiley-ISTE, Hoboken, 2009)CrossRefGoogle Scholar
  19. 19.
    D. Li, S. Zhang, W. Tang, Risk based inspection planning for ship structures using a decision tree method. Naval Engineers Journal 116, 73–84 (2004)CrossRefGoogle Scholar
  20. 20.
    I. Lotsberg, G. Sigurdsson, A. Fjeldstad, T. Moan, Probabilistic methods for planning of inspection for fatigue cracks in offshore structures, Marine Structures (Elsevier, Amsterdam, 2016)Google Scholar
  21. 21.
    J. Newman, I. Raju, An empirical stress intensity factor equation for the surface crack. Eng. Fract. Mech. 15(1–2), 185–192 (1981)CrossRefGoogle Scholar
  22. 22.
    A. Papatzimos, T. Dawood, P. Thies, Cost-effective risk-based inspection planning for offshore wind farms (2018). https://ore.exeter.ac.uk/repository/bitstream/handle/10871/36442/Papatzimos_et%20al_2018_INSIGHT.pdf?sequence=1isAllowed=y
  23. 23.
    T. Ribeiro Extensão da vida útil à fadiga de estruturas offshore fixas formadas por elementos tubulares, in Thesis, University of Coimbra (2017).  https://doi.org/10.5281/zenodo.2435731
  24. 24.
    T. Ribeiro, Monte Carlo simulations results for estimating an offshore structure fatigue life with a Fracture mechanics based crack growth model, after additional information was considered through Bayesian inference at t = 13 years (2018a). http://doi.org/10.5281/zenodo.1819880
  25. 25.
    T. Ribeiro, Fatigue failure accumulated probability of an offshore structure as computed in initial condition and after considering additional information through Bayesian inference (2018b). http://doi.org/10.5281/zenodo.1947571
  26. 26.
    S. Sankararaman, K. Goebel why is the remaining useful life prediction uncertain?, in Annual Conference of the Prognostics and Health Management Society (2013)Google Scholar
  27. 27.
    J. Sorensen, G. Ersdal Risk based inspection planning of ageing structures, in Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal (2008)Google Scholar
  28. 28.
    J. Sorensen, M. Faber, R. Rackwitz, P. Thoft-Christensen, Modelling in optimal inspection and repair, in Proc. OMAE91, Stavenger, Norway (1991)Google Scholar
  29. 29.
    The British Standards Institution, BS7910:2013+A1:2015 guide to methods for assessing the acceptability of flaws in metallic structures (The British Standards Institution, London, 2015)Google Scholar
  30. 30.
    S. Walbridge, A Probabilistic Study of Fatigue in Post-weld Treated Tubular Bridge Structures, Thèse 3330 (École Polytechnique Fédérale de Lausanne, Lausanne, 2005)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Tal Projecto, Lda.LisbonPortugal
  2. 2.ISISECoimbraPortugal
  3. 3.Structurame, SARLLausanneSwitzerland
  4. 4.Polytechnic Institute of Castelo BrancoCastelo BrancoPortugal

Personalised recommendations