Journal of Failure Analysis and Prevention

, Volume 19, Issue 3, pp 673–681 | Cite as

Plastic Zones at a Fatigue Crack Tip

  • Albashir Gwider
  • Naryanaswami RanganathanEmail author
Technical Article---Peer-Reviewed


Nanoindentation measurements are carried out in the fatigue plastic zone in the 2024 T351 alloy. It is shown that variations in hardness, plastic work and plasticity index show typical evolution permitting the identification of cyclic and monotonic plastic zones. The measured values are comparable with theoretical estimations. A calibration test permits the evolution of strains in the plastic zone.


Aluminum Fatigue analysis Fatigue crack growth Nanoindentation Plastic zone 



  1. 1.
    N. Ranganathan, J. Petit, Quantitative measurements in the plastic zone created by an overload in air and vacuum, in Fatigue Mechanisms advances in quantitative measurement of physical damage ASTM STP 811, ed. by J. Lankford, et al. (American Society for Testing and Materials, Philadelphia, 1983), pp. 464–484CrossRefGoogle Scholar
  2. 2.
    S.M.A. Khan, M.K. Khraisheh, Analysis of mixed mode crack initiation angles under various loading conditions. Eng. Fract. Mech. 67, 397–419 (2000)CrossRefGoogle Scholar
  3. 3.
    S.M.A. Khan, M.K. Khraisheh, A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int. J. Plast. 20, 55–84 (2004)CrossRefGoogle Scholar
  4. 4.
    C.B. Li, S.K. Kwang, The minimum plastic zone radius criterion for crack initiation direction applied to surface cracks and through-cracks under mixed mode loading. Int. J. Fatigue 26, 1169–1178 (2004)CrossRefGoogle Scholar
  5. 5.
    K. Golos, B. Wasiluk, Role of plastic zone in crack growth direction criterion under mixed mode loading. Int. J. Fract. 102, 341–353 (2000)CrossRefGoogle Scholar
  6. 6.
    K. Jendhoubi, Mesures locales et globales globales des paramètres mécaniques gouvernant la fissuration par fatigue (Theis université of Poitiers, Poitiers, 1987)Google Scholar
  7. 7.
    A. Uguz, J.W. Martin, Plastic zone size measurement techniques for metallic materials. Mater. Charact. 37, 105–118 (1996)CrossRefGoogle Scholar
  8. 8.
    A. Ratier, P. Ferraud, F. Chalon, P. Lallet, N. Ranganathan, An x-ray diffraction method to improve fatigue fracture surface analysis. J. Fail. Anal. Prev. 16(3), 369–375 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Poon et al., An analysis of nanoindentation in elasto-plastic solids. Int. J. Solids Struct. 45, 6399–6415 (2008)CrossRefGoogle Scholar
  10. 10.
    N. Ranganathan, Contribution au développement d’une approche énergétique à la fissuration par fatigue, DSc Thesis, University of Poitiers, 1985Google Scholar
  11. 11.
    B.D. Beake, A.J. Harris, T.W. Liskiewicz, Advanced nanomechanical test techniques, in Materials Characterization Modern Methods and Applications, ed. by N. Ranganathan (Pan Satnford Publication, Singapore, 2015)Google Scholar
  12. 12.
    C. Bathias, R.M.N. Pelloux, Fatigue crack propagation in martensitic and austenitic steels. Metall. Trans. 4, 1265–1273 (1973)CrossRefGoogle Scholar
  13. 13.
    R. Vishwanathan, Damage mechanisms and life assessment of high b-temperature components (ASM International, Metals Park, 1995)Google Scholar
  14. 14.
    M. Prudhomme, F. Billy, J. Alexis, G. Benoit, F. Hamon, C. Larignon, G. Odemer, C. Blanc, G. Hénaff, Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy. Int. J. Fatigue 107, 60–71 (2018)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Laboratoire Gabriel Lamé, E.A. 7494Polytech ToursToursFrance

Personalised recommendations