Advertisement

Journal of Failure Analysis and Prevention

, Volume 19, Issue 2, pp 536–542 | Cite as

Degradation of Polycarbonate Properties Under Thermal Aging

  • Sonya RedjalaEmail author
  • Rabah Ferhoum
  • Nourredine Aït Hocine
  • Said Azem
Technical Article---Peer-Reviewed
  • 31 Downloads

Abstract

The aim of this paper is to characterize the thermal aging effect near the glass transition temperature of polycarbonate (PC) at different hold time. For this, the physicochemical characterization and mechanical behavior of PC after annealing at 120 °C for 72, 144 and 216 h were investigated. The microstructural analysis was conducted by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Then, the aged samples were also analyzed using thermogravimetric analysis and mechanical tests. The microcracks were revealed by the SEM, and an increase in the volume of crystalline domains, for 72 and 144 h of the aging, was highlighted by XRD. Furthermore, a decrease in Young’s modulus and microhardness of PC was noted. It seems that the annealing of the PC at 120 °C, during the three durations, caused physical and chemical aging producing break in the bonds leading to a beginning of degradation which can cause a sudden failure of the material.

Keywords

Polycarbonate Thermal degradation Aging times Physical aging Microstructure evolution Mechanical properties 

Notes

References

  1. 1.
    L. Jiang, M. Zhou, Y. Ding, Y. Zhou, Y. Dan, Aging induced ductile-brittle-ductile transition in bisphenol A polycarbonate. J. Polym. Res. 25(2), 25–39 (2018)CrossRefGoogle Scholar
  2. 2.
    Z. Cai, H. Yu, Y. Zhang, M. Li, X. Niu, Z. Shi, Z. Cui, C. Chen, D. Zhang, Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide. Polymer 61, 40–146 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Rivaton, B. Mailhot, J. Soulestin, H. Varghese, J.L. Gardette, Influence of the chemical structure of polycarbonates on the contribution of crosslinking and chain scissions to the photothermal ageing. Eur. Polym. J. 38, 1349–1363 (2002)CrossRefGoogle Scholar
  4. 4.
    ASM International, Polycarbonate roof tops olympic stadium in athens. JFAPBC 4(4), 13–14 (2004)CrossRefGoogle Scholar
  5. 5.
    D.J.A. Senden, J.A.W.V. Dommelen, L.E. Govaert, Physical aging and deformation kinetics of polycarbonate. J. Polym. Sci. B Polym. Phys. 50(22), 1589–1596 (2012)CrossRefGoogle Scholar
  6. 6.
    V.A. Soloukhin, J.C.M. Brokken-Zijp, O.L.J.V. Asselen, G.D. With, Physical aging of polycarbonate: elastic modulus, hardness, creep, endothermic peak, molecular weight distribution, and infrared data. Macromolecules 36(20), 7585–7597 (2003)CrossRefGoogle Scholar
  7. 7.
    B. Jang, ChA Wilkie, ATGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym. Degrad. Stab. 86(3), 419–430 (2004)CrossRefGoogle Scholar
  8. 8.
    C.H. Ho, T. Vu-Khanh, Effects of time and temperature on physical aging of polycarbonate. Theoret. Appl. Fract. Mech. 39(2), 107–116 (2003)CrossRefGoogle Scholar
  9. 9.
    M.I.M. Habib, Applications des méthodes de l’analyse thermique à l’étude du vieillissement des polymères. Ph.D. Thesis, Blaise Pascal - Clermont-Ferrand II University, 2013 (French) Google Scholar
  10. 10.
    M. Ben Hassine, Modélisation du vieillissement thermique et mécanique d’une protection externe en EPDM de jonctions rétractables à froid. Ph.D. Thesis, Ecole nationale supérieure d’arts et métiers—ENSAM University, 2013 (French) Google Scholar
  11. 11.
    A. Boubakri, N. Haddar, K. Elleuch, Y. Bienvenu, Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. Comptes Rendus Mecanique 339(10), 666–673 (2011)CrossRefGoogle Scholar
  12. 12.
    D.G. Legrand, Crazing, yielding, and fracture of polymers. I. Ductile brittle transition in polycarbonate. J. Appl. Polym. Sci. 13, 2129–2147 (1969)CrossRefGoogle Scholar
  13. 13.
    A.J. Hill, K.J. Heater, C.M. Agrawal, The effects of physical aging in polycarbonate. J. Polym. Sci. B Polym. Phys. 28, 387–405 (1990)CrossRefGoogle Scholar
  14. 14.
    G. Allen, D.C.W. Morley, T. Williams, The impact strength of polycarbonate. J. Mater. Sci. 8, 1449–1452 (1973)CrossRefGoogle Scholar
  15. 15.
    E. Courvoisier, Analyse et modélisation cinétique du vieillissement thermique des matrices PEI et PEEK et ses conséquences sur l’absorption d’eau. Ph.D. Thesis, Ecole nationale supérieure d’arts et métiers—ENSAM University, 2017 (French) Google Scholar
  16. 16.
    A. S. Maxwell, Review of accelerated ageing methods and lifetime prediction techniques for polymeric materials. NPL Report DEPC MPR 016, 2005Google Scholar
  17. 17.
    J.H. Golden, B.L. Hammant, E.A. Hazell, The effect of thermal pretreatment on the strength of polycarbonate. J. Appl. Polym. Sci. 11, 1571–1579 (1967)CrossRefGoogle Scholar
  18. 18.
    C. Dreistadt, Analyse expérimentale et modélisation micromécanique du comportement du polycarbonate soumis aux chargements complexes. Ph.D. Thesis, Paul Verlaine de Metz University, 2007 (French) Google Scholar
  19. 19.
    I.N. Gogotov, SKh Barazov, The effect of ultraviolet light and temperature on the degradation of composite polypropylene. PLAST Massy No. 12, 55–58 (2012)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Sonya Redjala
    • 1
    Email author
  • Rabah Ferhoum
    • 1
  • Nourredine Aït Hocine
    • 2
  • Said Azem
    • 1
  1. 1.Universite Mouloud Mammeri de Tizi Ouzou - Génie-MécaniqueTizi OuzouAlgeria
  2. 2.INSA de Blois - Loire-et-CherBloisFrance

Personalised recommendations