Journal of Failure Analysis and Prevention

, Volume 19, Issue 2, pp 301–307 | Cite as

Thermal Fatigue Failure of Low-Pressure Turbine Blade in a Low-Bypass Turbofan Engine

  • R. K. MishraEmail author
  • S. K. Jha
Case History---Peer-Reviewed


Failure of low-pressure (LP) turbine rotor blade in a low-bypass turbofan engine is analyzed to determine its root cause. Forensic and metallurgical investigations are carried out on the affected blades. High surface oxidation on damaged blade is found to be the reason for crack initiation in blades. Thermal fatigue is the probable cause of failure in the blades due to prolong operation at maximum condition and malfunction of engine control system.


Turbine blade Thermal fatigue Intergranular mode Surface oxidation 



The authors are very grateful to the Chief Executive (Airworthiness), CEMILAC, for his kind permission for publishing this paper. The authors are also very thankful to the engineers of Hindustan Aeronautics Limited and Aeronautical Quality Assurance for their support and help during this investigation.


  1. 1.
    B.A. Cowles, High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996)CrossRefGoogle Scholar
  2. 2.
    H. Ozaltun et al., An energy-based method for uni-axial fatigue life calculation. ASME Turbo Expo 2009: Power for Land, Sea, and Air. American Society of Mechanical Engineers (2009)Google Scholar
  3. 3.
    E. Poursaeidi, M. Aieneravaie, M.R. Mohammadi, Failure analysis of a second stage blade in a gas turbine engine. J. Eng. Fail. Anal. 15(8), 1111–1129 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Hour, B.J. Wicks, R.A. Antoniou, An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. J. Eng. Fail. Anal. 9(2), 201–211 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2003), pp. 256–257Google Scholar
  6. 6.
    C.B. Meher-Homji, G. Gabriles, in Gas Turbine Blade failures-Causes, Avoidance and Trouble-Shooting. Proceedings of 27th Turbomachinery Symposium (1995)Google Scholar
  7. 7.
    T.N. Mehdi et al, in Failure Analysis of Gas Turbine blades. Proceedings of the 2008 IAJC-IJME International Conference, ISBN 978-1-60643-379-9Google Scholar
  8. 8.
    H. Cohen, G.F.C. Rogers, H.I.H. Saravanamuttoo, Gas Turbine Theory (Wiley, Hooboken, 1996)Google Scholar
  9. 9.
    R.K. Mishra, K. Srinivasan, Failure of low-pressure turbine blades in military turbofan engines: causes and remedies. J. Fail. Anal. Prev. 16(4), 622–628 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Kazempour-Liacy, S. Abouali, M. Akbari-Garakani, Failure analysis of a first stage gas turbine blade. J. Eng. Fail. Anal. 18(1), 517–522 (2011)CrossRefGoogle Scholar
  11. 11.
    A.H. Lefebvre, Gas Turbine Combustion (Taylor & Francis, Boca Rato, 1998)Google Scholar
  12. 12.
    R.B. Ross, Metallic Materials Specification Handbook (Springer, Berlin, 2013)Google Scholar
  13. 13.
    J.A. Bannantine, J.J. Comer, J.L. Handrock, Fundamental of Metal Fatigue Analysis (Prentice Hall Inc, Upper Saddle River, 1990), pp. 40–87Google Scholar
  14. 14.
    S.K. Bhaumik et al., Failure of a low pressure turbine rotor blade of an aeroengine. Eng. Fail. Anal. 13(8), 1202–1219 (2006)CrossRefGoogle Scholar
  15. 15.
    R.K. Mishra, J. Thomas, K. Srinivasan, N. Vaisakhi, R. Bhat, Investigation of LP turbine blade failure in a low bypass turbofan engine. J. Fail. Anal. Prev. 14(2), 160–166 (2014)CrossRefGoogle Scholar
  16. 16.
    R.K. Mishra, J. Thomas, K. Srinivasan, V. Nandi, R.R. Bhatt, Investigation of HP turbine blade failure in a military turbofan engine. Int. J. Turbo Jet Engines 1, 1 (2015). Google Scholar
  17. 17.
    A. S. M. Handbook, ed by G.F. Vander Voort. Metallography and Microstructure, vol 9 (ASM International, 2004)Google Scholar
  18. 18.
    P. Caron, T. Khan, Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 3(8), 513–523 (1999)CrossRefGoogle Scholar
  19. 19.
    H. Harada, High Temperature Materials for Gas Turbines: The Present and Future (International Gas Turbine Congress, Tokyo, 2003)Google Scholar
  20. 20.
    N. Eliaz, G. Shemesh, R.M. Latanision, Hot corrosion in gas turbine components. J. Eng. Fail. Anal. 9(1), 31–43 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Bose, High Temperature Coatings (Butterworth-Heinemann, Oxford, 2011)Google Scholar
  22. 22.
    J. Kameda et al., High temperature environmental attack and mechanical degradation of coatings in gas turbine blades. Mater. Sci. Eng. A 229(1), 42–54 (1997)CrossRefGoogle Scholar
  23. 23.
    K.B. Marais, M.R. Robichaud, Analysis of trends in aviation maintenance risk, an empirical approach. Reliab. Eng. Syst. Saf. 106, 104–118 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Madarász, L. Fozo, R. Andoga, Intelligent Technologies in Modeling and Control of Turbojet Engines (INTECH Open Access Publisher, London, 2010)CrossRefGoogle Scholar
  25. 25.
    W. Lord, D. MacMartin, G. Tillman, Flow control opportunities in gas turbine engines, in Fluids 2000 Conference and Exhibit (Denver, CO, 2000), p. 2234Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Regional Center for Military Airworthiness (Engines), CEMILACBangaloreIndia

Personalised recommendations