Advertisement

Failure Analysis of Additively Manufactured Polyester Test Specimens Exposed to Various Liquid Media

  • Israel A. Carrete
  • Diego Bermudez
  • Clarissa Aguirre
  • Fabian A. Alvarez-Primo
  • Shweta Anil-Kumar
  • Paulina Chinolla
  • Michelle Gamboa
  • Sergio A. Gonzalez
  • Hugo E. Heredia
  • Austin M. Hernandez
  • Emmanuel Levario
  • John R. Lindquist
  • Victoria C. Luna
  • Luis M. Martinez
  • Victor E. Mendez
  • Jonathan J. Slager
  • Leticia Ugarte-Sanchez
  • Yamile A. Urquidi
  • Abraham Zamora
  • David A. RobersonEmail author
Technical Article---Peer-Reviewed
  • 32 Downloads

Abstract

Additive manufacturing platforms that rely on thermoplastic feedstock materials are now expected to fabricate components intended for deployment in a wide variety of environments, necessitating an understanding of the ability of a material to perform within a broad range of conditions. The work presented here explored the effect of submerging two polyester materials widely used in fused filament fabrication processes in five common liquid media: distilled water, apple cider vinegar, Mexican Coca-cola, 200 proof ethanol and distilled white vinegar for a seven day duration. Mechanical testing, dynamic mechanical analysis and characterization of the fracture surfaces via scanning electron microscopy were used to understand the effect of liquid media exposure. The effects of polymer degradation due to hygroscopic and hydrolytic mechanisms effects were documented. The need for specific procedures for the testing of the environmental effects on the degradation of additively manufactured polymeric components is also highlighted.

Keywords

Electron fractography Failure analysis Plastics Scanning electron microscopy Polymer degradation Fused filament fabrication Additive manufacturing 

Notes

Acknowledgments

The work presented here was the result of the effort of the students enrolled in the Fall, 2018 section of MME 4310/5390 Polymer Engineering. We are grateful for the resources made available to us by the Department of Metallurgical, Materials and Biomedical Engineering (MMBME) at The University of Texas at El Paso (UTEP). We express our appreciation and gratitude to the MMBME Department Chair, Dr. Stella A. Quiñones for her support. We also thank the Research Assistants in the Polymer Extrusion Lab for their significant contribution to this work.

References

  1. 1.
    B. Stephens, P. Azimi, Z. El Orch, T. Ramos, Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79, 334–339 (2013).  https://doi.org/10.1016/j.atmosenv.2013.06.050 CrossRefGoogle Scholar
  2. 2.
    P. Azimi, D. Zhao, C. Pouzet, N.E. Crain, B. Stephens, Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. (2016).  https://doi.org/10.1021/acs.est.5b04983 Google Scholar
  3. 3.
    Flynt J. 3D Printer Filament Guide - 23 + Types of Materials. 3D Insid (2018). https://3dinsider.com/3d-printer-filaments/. Accessed 18 Dec 2018
  4. 4.
    R.B. Dupaix, M.C. Boyce, Finite strain behavior of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG). Polymer 46, 4827–4838 (2005).  https://doi.org/10.1016/j.polymer.2005.03.083 CrossRefGoogle Scholar
  5. 5.
    B. Wittbrodt, J.M. Pearce, The effects of PLA color on material properties of 3-D printed components. Addit Manuf 8, 110–116 (2015).  https://doi.org/10.1016/j.addma.2015.09.006 CrossRefGoogle Scholar
  6. 6.
    L. Yu, H. Liu, F. Xie, L. Chen, X. Li, Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid. Polym. Eng. Sci. 48, 634–641 (2008).  https://doi.org/10.1002/pen.20970 CrossRefGoogle Scholar
  7. 7.
    C.R. Rocha Gutierrez, Improving the engineering properties of PLA for 3D printing and beyond (The University of Texas at El Paso, Ph.D, 2016)Google Scholar
  8. 8.
    T. Ke, X. Sun, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 89, 1203–1210 (2003).  https://doi.org/10.1002/app.12162 CrossRefGoogle Scholar
  9. 9.
    K.-L.G. Ho, A.L. Pometto, A. Gadea-Rivas, J.A. Briceño, A. Rojas, Degradation of polylactic acid (PLA) plastic in costa rican soil and Iowa State University compost rows. J. Environ. Polym. Degrad. 7, 173–177 (1999).  https://doi.org/10.1023/a:1022874530586 CrossRefGoogle Scholar
  10. 10.
    S. Farah, D.G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. PLA Biodegrad Polym. 107, 367–392 (2016).  https://doi.org/10.1016/j.addr.2016.06.012 Google Scholar
  11. 11.
    J.G.B. Derraik, The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44, 842–852 (2002).  https://doi.org/10.1016/S0025-326X(02)00220-5 CrossRefGoogle Scholar
  12. 12.
    S.L. Dautel, Transoceanic Trash: International and United States Strategies for the Great Pacific Garbage Patch Farming and Food: How We Grow What We Eat: Comment. Gold Gate Univ. Environ. Law J. 3, 181–208 (2009)Google Scholar
  13. 13.
    J. Kaiser, The dirt on ocean garbage patches. Science 328, 1506 (2010).  https://doi.org/10.1126/science.328.5985.1506 CrossRefGoogle Scholar
  14. 14.
    H. Hirai, H. Takada, Y. Ogata, R. Yamashita, K. Mizukawa, M. Saha et al., Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).  https://doi.org/10.1016/j.marpolbul.2011.06.004 CrossRefGoogle Scholar
  15. 15.
    K.J. McDermid, T.L. McMullen, Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago. Mar. Pollut. Bull. 48, 790–794 (2004).  https://doi.org/10.1016/j.marpolbul.2003.10.017 CrossRefGoogle Scholar
  16. 16.
    D. Hosler, S.L. Burkett, M.J. Tarkanian, Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica. Science 284, 1988–1991 (1999).  https://doi.org/10.1126/science.284.5422.1988 CrossRefGoogle Scholar
  17. 17.
    A.R. Torrado, D.A. Roberson, Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns. J. Fail. Anal. Prev. 16, 154–164 (2016).  https://doi.org/10.1007/s11668-016-0067-4 CrossRefGoogle Scholar
  18. 18.
    A.R. Torrado, C.M. Shemelya, J.D. English, Y. Lin, R.B. Wicker, D.A. Roberson, Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit. Manuf. 6, 16–29 (2015).  https://doi.org/10.1016/j.addma.2015.02.001 CrossRefGoogle Scholar
  19. 19.
    D.A. Roberson, A.R. Torrado Perez, C.M. Shemelya, A. Rivera, E. MacDonald, R.B. Wicker, Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test specimens. Addit. Manuf. 7, 1–11 (2015).  https://doi.org/10.1016/j.addma.2015.05.002 CrossRefGoogle Scholar
  20. 20.
    A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling. Rapid. Prototyp J. 9, 252–264 (2003).  https://doi.org/10.1108/13552540310489631 CrossRefGoogle Scholar
  21. 21.
    A.R.T. Perez, D.A. Roberson, R.B. Wicker, Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J. Fail. Anal. Prev. 14, 343–353 (2014).  https://doi.org/10.1007/s11668-014-9803-9 CrossRefGoogle Scholar
  22. 22.
    S.-H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8, 248–257 (2002).  https://doi.org/10.1108/13552540210441166 CrossRefGoogle Scholar
  23. 23.
    O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process. 15, 107–122 (2000).  https://doi.org/10.1080/10426910008912976 CrossRefGoogle Scholar
  24. 24.
    Torrado Perez AR. Defeating anisotropy in material extrusion 3D printing via materials development, Ph.D. thesis The University of Texas at El Paso, 2015Google Scholar
  25. 25.
    E. Kim, Y.-J. Shin, S.-H. Ahn, The effects of moisture and temperature on the mechanical properties of additive manufacturing components: fused deposition modeling. Rapid Prototyp J. 22, 887–894 (2016).  https://doi.org/10.1108/RPJ-08-2015-0095 CrossRefGoogle Scholar
  26. 26.
    14:00-17:00. ISO 527-1:2012. ISO n.d. http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/60/56045.html. Accessed 24 Dec 2018
  27. 27.
    J.D. Yoon, S.W. Cha, Change of glass transition temperature of polymers containing gas. Polym Test 20, 287–293 (2001).  https://doi.org/10.1016/S0142-9418(00)00034-9 CrossRefGoogle Scholar
  28. 28.
    V.S.G. Silverajah, N.A. Ibrahim, N. Zainuddin, W.M.Z.W. Yunus, H.A. Hassan, Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules 17, 11729–11747 (2012).  https://doi.org/10.3390/molecules171011729 CrossRefGoogle Scholar
  29. 29.
    Siqueiros JG, Roberson DA. In situ wire drawing of phosphate glass in polymer matrices for material extrusion 3D printing. Int. J. Polym. Sci. (2017)Google Scholar
  30. 30.
    E. Vey, C. Roger, L. Meehan, J. Booth, M. Claybourn, A.F. Miller et al., Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym. Degrad. Stab. 93, 1869–1876 (2008).  https://doi.org/10.1016/j.polymdegradstab.2008.07.018 CrossRefGoogle Scholar
  31. 31.
    J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335–2346 (2000).  https://doi.org/10.1016/S0142-9612(00)00101-0 CrossRefGoogle Scholar
  32. 32.
    H. Abdillahi, E. Chabrat, A. Rouilly, L. Rigal, Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Ind. Crops Prod. 50, 104–111 (2013).  https://doi.org/10.1016/j.indcrop.2013.06.028 CrossRefGoogle Scholar
  33. 33.
    A.G. Mikos, M.D. Lyman, L.E. Freed, R. Langer, Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15, 55–58 (1994).  https://doi.org/10.1016/0142-9612(94)90197-X CrossRefGoogle Scholar
  34. 34.
    C.M.O. Müller, A.T.N. Pires, F. Yamashita, Characterization of thermoplastic starch/poly(lactic acid) blends obtained by extrusion and thermopressing. J. Braz. Chem. Soc. 23, 426–434 (2012).  https://doi.org/10.1590/S0103-50532012000300008 Google Scholar
  35. 35.
    J. Yang, Y. Wan, C. Tu, Q. Cai, J. Bei, S. Wang, Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method. Polym. Int. 52, 1892–1899 (2003).  https://doi.org/10.1002/pi.1272 CrossRefGoogle Scholar
  36. 36.
    B. Belloncle, C. Bunel, L. Menu-Bouaouiche, O. Lesouhaitier, F. Burel, Study of the degradation of poly(ethyl glyoxylate): biodegradation, toxicity and ecotoxicity assays. J. Polym. Environ. 20, 726–731 (2012).  https://doi.org/10.1007/s10924-012-0429-2 CrossRefGoogle Scholar
  37. 37.
    A. Göpferich, Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996).  https://doi.org/10.1016/0142-9612(96)85755-3 CrossRefGoogle Scholar
  38. 38.
    S.A. Gold, R. Strong, B.N. Turner, A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J. 20, 192–204 (2014).  https://doi.org/10.1108/rpj-01-2013-0012 CrossRefGoogle Scholar
  39. 39.
    F.A. Chávez, J.G. Siqueiros, I.A. Carrete, I.L. Delgado, G.W. Ritter, D.A. Roberson, Characterisation of phases and deformation temperature for additively manufactured shape memory polymer components fabricated from rubberised acrylonitrile butadiene styrene. Virtual Phys. Prototyp. 0, 1–15 (2018).  https://doi.org/10.1080/17452759.2018.1550694 Google Scholar
  40. 40.
    S. Li, Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res. 48, 342–353 (1999).  https://doi.org/10.1002/(SICI)1097-4636(1999) CrossRefGoogle Scholar
  41. 41.
    J. Jansen, Plastic failure through molecular degradation. Plast. Eng. 71, 34–39 (2015).  https://doi.org/10.1002/j.1941-9635.2015.tb01285.x CrossRefGoogle Scholar
  42. 42.
    Ramirez A. Comparison of Extruder Systems for 3D Printer Filament Fabrication. ETD Collect Univ Tex El Paso 2017:1–83Google Scholar
  43. 43.
    K. Schnittker, E. Arrieta, X. Jimenez, D. Espalin, R.B. Wicker, D.A. Roberson, Integrating digital image correlation in mechanical testing for the materials characterization of big area additive manufacturing feedstock. Addit. Manuf. 2, 1–10 (2018).  https://doi.org/10.1016/j.addma.2018.12.016 Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Israel A. Carrete
    • 1
    • 2
  • Diego Bermudez
    • 1
    • 2
  • Clarissa Aguirre
    • 2
  • Fabian A. Alvarez-Primo
    • 2
  • Shweta Anil-Kumar
    • 2
  • Paulina Chinolla
    • 2
  • Michelle Gamboa
    • 2
  • Sergio A. Gonzalez
    • 2
  • Hugo E. Heredia
    • 2
  • Austin M. Hernandez
    • 2
  • Emmanuel Levario
    • 2
  • John R. Lindquist
    • 2
  • Victoria C. Luna
    • 2
  • Luis M. Martinez
    • 3
  • Victor E. Mendez
    • 2
  • Jonathan J. Slager
    • 4
  • Leticia Ugarte-Sanchez
    • 2
  • Yamile A. Urquidi
    • 2
  • Abraham Zamora
    • 2
  • David A. Roberson
    • 1
    • 2
    Email author
  1. 1.Polymer Extrusion LabThe University of Texas at El PasoEl PasoUSA
  2. 2.Department of Metallurgical, Materials and Biomedical EngineeringThe University of Texas at El PasoEl PasoUSA
  3. 3.Department of PhysicsThe University of Texas at El PasoEl PasoUSA
  4. 4.Department of Mechanical EngineeringThe University of Texas at El PasoEl PasoUSA

Personalised recommendations