Advertisement

Journal of Failure Analysis and Prevention

, Volume 19, Issue 1, pp 212–218 | Cite as

Failure Analyses of Propagation of Cracks in Repaired Pipe Under Internal Pressure

  • M. SalemEmail author
  • B. Mechab
  • M. Berrahou
  • B. Bachir Bouiadjra
  • B. Serier
Technical Article---Peer-Reviewed
  • 30 Downloads

Abstract

In this study, the analysis of the behavior of circumferential through-wall cracks in repaired elbow with bonded composite patch subjected to internal pressure is performed using three-dimensional finite element analyses. The effect of length cracks, the wall thickness (Rm/t), angle of the elbow (ψ) and properties of the patch is presented for calculating the stress intensity factors. The obtained results show that the bonded composite repair significantly reduces the stress intensity factors at the tip of repaired cracks. The Monte Carlo method is used to predict the distribution function of the mechanical response. According to the obtained results, we note that the crack length variations are important factors influencing the distribution function of KI. The uncertainty in this parameter has a significant effect on increasing the probability of failure of pipe and reducing the durability of structure.

Keywords

Failure Pipe Composite Fracture mechanics Safety 

List of symbols

J

J-integral

KI

Stress intensity factors (SIF)

n

Strain hardening index in the (R–O) Ramberg–Osgood

P

Internal pressure

t

Wall thickness of the cylinder

α

Coefficient for the (R–O) Ramberg–Osgood

εo

Normalizing strain

ψ

Angle of the elbow

θ

Half circumferential angle of a circumferential crack

Rm

Mean cross-sectional radius of the elbow

Dm

Mean diameter of elbow cross section

υ

Poisson’s ratio

σy

Yield stress

σu

Ultime stress

FEM

Finite element method

Notes

References

  1. 1.
    Z.-R. Yang, H.-S. Li, X.-L. Guo, H.-Y. Li, Damage identification in beam-like pipeline based on modal information. Struct. Eng. Mech 26(2), 179–190 (2007)CrossRefGoogle Scholar
  2. 2.
    A.S. Moghaddam, S. Mohammadnia, M. Sagharichiha, Analysis of offshore pipeline laid on 3D seabed configuration by Abaqus. Ocean Syst. Eng. 5(1), 31–40 (2015)CrossRefGoogle Scholar
  3. 3.
    A.S. Moghaddam, S. Mohammadnia, Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline. Ocean Syst. Eng. 4(4), 279–291 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Farahpour, V. Babaghasabha, M. Khadem, Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders. Struct. Eng. Mech. 55(6), 1087–1097 (2015)CrossRefGoogle Scholar
  5. 5.
    E. Baranger, O. Allix, L. Blanchard, A computational strategy for the analysis of damage in composite pipes. Compo Sci. Tech. 69(1), 88–92 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Bach, X. Wang, Constraint-based fracture mechanics analysis of cylinders with internal circumferential cracks. Struct. Eng. Mech. 47(1), 131–147 (2013)CrossRefGoogle Scholar
  7. 7.
    B. Mechab, B. Serier, B. Bachir Bouiadjra, K. Kaddouri, X. Feaugas, Linear and non-linear analyses for semi-elliptical surface cracks in pipes under bending. Int. J. Pres. Ves. Pip. 88, 57–63 (2011)CrossRefGoogle Scholar
  8. 8.
    B. Mechab, B. Serier, K. Kaddouri, Bouiadjra B. Bachir, Probabilistic elastic-plastic analysis of cracked pipes subjected to internal pressure load. Nucl. Eng. Des. 275, 281–286 (2014)CrossRefGoogle Scholar
  9. 9.
    C.R. Alexander, Evaluating Damaged Subsea Pipelines Using an Engineering-Based Integrity Management Program. ASME International Offshore Pipeline Forum, Paper No. IOPF2009-6002 Houston, Texas (2009)Google Scholar
  10. 10.
    H.F. Abdalla, Shakedown boundary determination of a 90° back-to-back pipe bend subjected to steady internal pressures and cyclic in-plane bending moments. Int. J. Pres. Ves. Pip 116, 1–9 (2014)CrossRefGoogle Scholar
  11. 11.
    J.-H. An, Y.-J. Kim, P.J. Budden, Elastic stress intensity factors and crack opening displacements for circumferential through-walled cracked elbows. Eng. Fract. Mech. 77(14), 2821–2839 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Chattopadhyay, W. Venkatramana, B.K. Dutta, H.S. Kushwaha, Plastic collapse moment equations of throughwall axially cracked elbows subjected to combined internal pressure and in-plane bending moment. Eng. Fract. Mech. 76(9), 1380–1385 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Bezzerouki, A. Albedah, B. Bachir Bouiadjra, W. Ouddad, F. Benyahia, Composite wrap in pipes under traction effect Computation of the stress intensity factor for repaired cracks with bonded. J. Thermoplast. Compo Mater. 26(6), 831–844 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Toutanji, S. Dempsey, Stress modeling of pipelines strengthened with advanced composites materials. Thin-Walled Struct. 39(2), 153–165 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Alexander, O. Ochoa, Extending onshore pipeline repair to offshore steel risers with carbon- fiber reinforced composites. Compo Struct. 92(2), 499–507 (2010)CrossRefGoogle Scholar
  16. 16.
    Andreas T, Offshore Standard, DNV-OS-C501, Composite Components (2003)Google Scholar
  17. 17.
    ABAQUS, ABAQUS standard/user’s manual, version 6.5. Hibbit Karlsson & Sorensen, Inc., Pawtucket, RI, USA (2007)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • M. Salem
    • 1
    Email author
  • B. Mechab
    • 1
  • M. Berrahou
    • 1
  • B. Bachir Bouiadjra
    • 1
  • B. Serier
    • 1
  1. 1.LMPM, Department of Mechanical EngineeringUniversity of Sidi Bel AbbesSidi Bel AbbèsAlgeria

Personalised recommendations