Journal of Failure Analysis and Prevention

, Volume 19, Issue 1, pp 154–160 | Cite as

Research on Diameter Tolerance of Transmission Shaft Based on Interval Analysis

  • Que Wu
  • Xintian LiuEmail author
  • Zhiqiang Liang
  • Yansong Wang
  • Xiaolan Wang
Technical Article---Peer-Reviewed


This paper describes how to discuss the uncertainty of diameter tolerance by using interval analysis. Firstly, the interval relationship among reliability, diameter tolerance and process capability index (PCI) is obtained. Considering the reasonable PCI range, then reliability range is calculated and compared by using universal gray method and combinational method, respectively. Finally, the ranges of improved tolerance and other uncertain variables are obtained. The results show that the reliability and tolerance ranges obtained by universal gray method are more reasonable. This paper provides a research thought for the uncertainty of diameter tolerance.


Diameter tolerance analysis Transmission shaft Interval analysis Reliability Process capability index 



This work is supported by the National Natural Science Foundation of China (51675324).


  1. 1.
    W. Wu, S.S. Rao, Fuzzy analysis of geometric tolerances using interval method. Proc. Inst. Mech. Eng. C J. Mech. 220(4), 489–497 (2006)CrossRefGoogle Scholar
  2. 2.
    K.G. Swift, M. Raines, J.D. Booker, Tolerance optimization in assembly stacks based on capable design. Proc. Inst. Mech. Eng. B J. Mech. 213(7), 677–693 (1999)CrossRefGoogle Scholar
  3. 3.
    A. Tiwari, P.C. Chang, M.K. Tiwari, A highly optimised tolerance-based approach for multi-stage, multi-product supply chain network design. Int. J. Prod. Res. 50(19), 5430–5444 (2012)CrossRefGoogle Scholar
  4. 4.
    M.F. Huang, Y.R. Zhong, Z.G. Xu, Concurrent process tolerance design based on minimum product manufacturing cost and quality loss. Int. J. Adv. Manuf. Technol. 25(7), 714–722 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Dems, W. Gutkowski, Manufacturing tolerances and multiple loading conditions in structural configuration optimization. Int. J. Numer. Meth. Eng. 57(10), 1341–1350 (2003)CrossRefGoogle Scholar
  6. 6.
    A.S. Tahan, J. Cauvier, Capability estimation of geometrical tolerance with a material modifier by a Hasofer–Lind index. J. Manuf. Sci. E Trans. ASME 134(2), 1–11 (2012)Google Scholar
  7. 7.
    J.N. Wu, S.Z. Yan, J.L. Li, Y.X. Gu, Mechanism reliability of bistable compliant mechanisms considering degradation and uncertainties: modeling and evaluation method. Appl. Math. Model. 40(23), 10377–10388 (2016)CrossRefGoogle Scholar
  8. 8.
    S.S. Rao, Description and optimum design of fuzzy mechanical systems. J. Mech. Trans. Autom. Des. 109(1), 126–132 (1987)CrossRefGoogle Scholar
  9. 9.
    C. Jiang, Q.F. Zhang, X. Han, J. Liu, D.A. Hu, Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis. Int. J. Numer. Meth. Eng. 103(1), 31–59 (2015)CrossRefGoogle Scholar
  10. 10.
    W.C. Qi, Z.P. Qiu, A collocation interval analysis method for interval structural parameters and stochastic excitation. Sci. China Phys. Mech. Astron. 55(1), 66–77 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Guo, X.P. Du, Reliability sensitivity analysis with random and interval variables. Int. J. Numer. Meth. Eng. 78(13), 1585–1617 (2009)CrossRefGoogle Scholar
  12. 12.
    J.L. Deng, Introduction to grey system theory. J Grey Syst UK 1(1), 1–24 (1989)Google Scholar
  13. 13.
    Q.Y. Wang, H.Q. Wu, J.S. Xue, K.D. Lin, On grey number: basic element of grey mathematics and its relations with fuzzy and real numbers. J. Grey Syst. UK 1(1), 69–77 (1989)Google Scholar
  14. 14.
    M. Ebadi, H. Shahriari, A process capability index for simple linear profile. Int. J. Adv. Manuf. Technol. 64(5), 857–865 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Kumar, P.B. Nair, A.J. Keane, S. Shahpar, Robust design using bayesian Monte Carlo. Int. J. Numer. Meth. Eng. 73(11), 1497–1517 (2008)CrossRefGoogle Scholar
  16. 16.
    J.M. Juran, Quality Control Handbook (McGraw-Hill, New York, 1974)Google Scholar
  17. 17.
    E. Kane, Victor, process capability indices. J. Qual. Technol. 38(4), 884–904 (1986)Google Scholar
  18. 18.
    L.K. Chang, S.W. Cheng, F. Spiring, A new measure of process capability. J. Qual. Technol. 20(3), 162–175 (1988)CrossRefGoogle Scholar
  19. 19.
    W.L. Pearn, S. Kotz, N.L. Johnson, Distribution and inferential properties of process capability indexes. J. Qual. Technol. 24(4), 216–231 (1992)CrossRefGoogle Scholar
  20. 20.
    W. Taam, P. Subbaiah, J.W. Liddy, A note on multivariate capability indices. J Appl Stat 20(3), 339–351 (1993)CrossRefGoogle Scholar
  21. 21.
    D.P. Karl, J. Morisette, W. Taam, Some applications of a multivariate capability index in geometric dimensioning and tolerancing. Qual. Eng. 6(4), 649–665 (1994)CrossRefGoogle Scholar
  22. 22.
    B. Wu, M.F. Li, Mechanical Parts and System Reliability Model (Chemical Industry Press, Beijing, 2003)Google Scholar
  23. 23.
    X.T. Liu, H.Z. Qi, X.L. Wang, Y.S. Wang, C.C. Li, M.L. Wang, Reliability analysis and evaluation of differential system based on low load strengthening model. Qual. Reliab. Eng. Int. 32(2), 647–662 (2015)CrossRefGoogle Scholar
  24. 24.
    P.K. Singh, P.K. Jain, S.C. Jain, Important issues in tolerance design of mechanical assemblies, part 1: tolerance analysis. Proc. Inst. Mech. Eng. J J. Eng. 223(10), 1249–1287 (2009)CrossRefGoogle Scholar
  25. 25.
    D.C. Montgomery, Introduction to Statistical Quality Control (Wiley, New Jersey, 2007)Google Scholar
  26. 26.
    S.S. Rao, L. Berke, Analysis of uncertain structural systems using interval analysis. AIAA J. 35(4), 727–735 (1997)CrossRefGoogle Scholar
  27. 27.
    L. Tenuti, N. Anselmi, P. Rocca, M. Salucci, A. Massa, Minkowski sum method for planar arrays sensitivity analysis with uncertain-but-bounded excitation tolerances. IEEE Trans. Antennas Propag. 65(1), 167–177 (2017)CrossRefGoogle Scholar
  28. 28.
    N. Anselmi, M. Salucci, P. Rocca, A. Massa, Power pattern sensitivity to calibration errors and mutual coupling in linear arrays through circular interval arithmetics. Sensors 16(6), 791 (2016)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Que Wu
    • 1
  • Xintian Liu
    • 1
    Email author
  • Zhiqiang Liang
    • 1
  • Yansong Wang
    • 1
  • Xiaolan Wang
    • 1
  1. 1.School of Mechanical and Automotive EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations