Journal of Failure Analysis and Prevention

, Volume 19, Issue 1, pp 204–211 | Cite as

Experimental Analysis on Residual Performance of Used 70 MPa Type IV Composite Pressure Vessels

  • Dongliang Wang
  • Binbin Liao
  • Zhengli Hua
  • Chaohua GuEmail author
  • Ping Xu
Technical Article---Peer-Reviewed


This paper was aimed to study residual performance of five 70 MPa type IV hydrogen composite pressure vessels that were employed in vehicles with same driving distance through a series of experiments. Firstly, external and internal visual inspections were performed to evaluate the damage status of hydrogen composite pressure vessels. Then the nonmetallic liner performance tests of one vessel were carried out including crystallinity test, hardness test, and tensile test. Besides, hydraulic fatigue test and hydraulic burst test for the remaining four vessels were conducted to evaluate residual strength. Experimental results show that the nonmetallic liner performance differs in different regions and temperature has an important influence on liner mechanical performance. The comparison between the results of direct burst tests and post-fatigue burst tests shows that long-term fatigue cycles lead to a reduction in burst pressure, but the effect is not significant by using hydraulic fatigue cycles in the current tests.


Hydrogen composite pressure vessels Polyamide-6 Liner performance Residual strength 



All authors wish to express their sincere thanks to the support of the National Key Research and Development Program of China (No. 2017YFC0805601). We also thank Jianfang Tan and Dr. Peng Jiang for helping with tests.


  1. 1.
    T.N. Veziroğlu, S. Sahin, 21st century’s energy: hydrogen energy system. Energy Convers. Manag. 49(7), 1820–1831 (2008)CrossRefGoogle Scholar
  2. 2.
    P.P. Edwards, V.L. Kuznetsov, W.I.F. David, Hydrogen energy. Philos. Trans. R. Soc. A 365(1853), 1043–1056 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Gurz, E. Baltacioglu, Y. Hames, K. Kaya, The meeting of hydrogen and automotive: a review. Int. J. Hydrog. Energy 42(36), 23334–23346 (2017)CrossRefGoogle Scholar
  4. 4.
    P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36(12), 4356–4362 (2008)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, J.P. Zhao, Z.W. Wang, Burst pressure prediction and structure reliability analysis of composite overwrapped cylinder. Appl. Compos. Mater. 25(6), 1269–1285 (2018)CrossRefGoogle Scholar
  6. 6.
    J.Y. Zheng, X.X. Liu, P. Xu, P.F. Liu, Y.Z. Zhao, J. Yang, Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrog. Energy 37(1), 1048–1057 (2012)CrossRefGoogle Scholar
  7. 7.
    P.F. Liu, J.K. Chu, S.J. Hou, J.Y. Zheng, Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel. Comput. Mater. Sci. 60, 137–148 (2012)CrossRefGoogle Scholar
  8. 8.
    J.P.B. Ramirez, D. Halm, J. Grandidier, S. Villalonga, F. Nony, 700 bar type IV high pressure hydrogen storage vessel burst—simulation and experimental validation. Int. J. Hydrog. Energy 40(38), 13183–13192 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Magneville, B. Gentilleau, S. Villalonga, F. Nony, H. Galiano, Modeling, parameters identification and experimental validation of composite materials behavior law used in 700 bar type IV hydrogen high pressure storage vessel. Int. J. Hydrog. Energy 40(38), 13193–13205 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Onder, O. Sayman, T. Dogan, N. Tarakcioglu, Burst failure load of composite pressure vessels. Compos. Struct. 89(1), 159–166 (2009)CrossRefGoogle Scholar
  11. 11.
    P.F. Liu, L.J. Xing, J.Y. Zheng, Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Compos. B 56(1), 54–61 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Camara, A.R. Bunsell, A. Thionnet, D.H. Allen, Determination of lifetime probabilities of carbon fibre composite plates and pressure vessels for hydrogen storage. Int. J. Hydrog. Energy 36(10), 6031–6038 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Wang, B. Wang, S. Wei, Y. Hong, C. Zheng, Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure. Compos. B 97, 274–281 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Tomioka, K. Kiguchi, Y. Tamura, H. Mitsuishi, Influence of pressure and temperature on the fatigue strength of type-3 compressed-hydrogen tanks. Int. J. Hydrog. Energy 37(22), 17639–17644 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Blanc-Vannet, Burst pressure reduction of various thermoset composite pressure vessels after impact on the cylindrical part. Compos. Struct. 160, 706–711 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Lin, X. Jia, H. Sun, H. Sun, D. Hui, X. Yang, Thermo-mechanical properties of filament wound CFRP vessel under hydraulic and atmospheric fatigue cycling. Compos. B 46(3), 227–233 (2013)CrossRefGoogle Scholar
  17. 17.
    Y.S. Kim, L.H. Kim, J.S. Park, The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles. Compos. Struct. 93(11), 2963–2968 (2011)CrossRefGoogle Scholar
  18. 18.
    Q.J. Wu, X.H. Liu, L.A. Berglund, An unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macromol. Rapid Commun. 22(17), 1438–1440 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Yebra-Rodríguez, P. Alvarez-Lloret, C. Cardell, A.B. Rodríguez-Navarro, Crystalline properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci. 43, 91–97 (2009)CrossRefGoogle Scholar
  20. 20.
    H.S. da Costa Mattos, J.M.L. Reis, L.G.M.O. de Medeiros, A.H. Monteiro, S.C.S. Teixeira, E.G. Chaves, Analysis of the cyclic tensile behaviour of an elasto-viscoplastic polyamide. Polym. Test. 58, 40–47 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Mizuno, N. Ogami, Y. Negishi, N. Katahira, M. Mizuno, N. Ogami, Y. Negishi, N. Katahira, M. Mizuno, N. Ogami, High pressure hydrogen tank for FCHV (2007)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Dongliang Wang
    • 1
  • Binbin Liao
    • 1
  • Zhengli Hua
    • 1
  • Chaohua Gu
    • 1
    Email author
  • Ping Xu
    • 2
  1. 1.Institute of Process EquipmentZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Institute of Applied MechanicsZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations