Journal of Failure Analysis and Prevention

, Volume 17, Issue 4, pp 740–749 | Cite as

Design Optimization of Composite Prosthetic Tubes Using GA-ANN Algorithm Considering Tsai-Wu Failure Criteria

  • Guilherme Ferreira Gomes
  • Camila Aparecida Diniz
  • Sebastião Simões da CunhaJr.
  • Antonio Carlos AncelottiJr.
Technical Article---Peer-Reviewed
  • 87 Downloads

Abstract

The investigation of possible failures in composite materials is a matter of very great importance, and the Tsai-Wu criterion is an effective criterion for analyzing those flaws in anisotropic materials and defining whether the material at a given load will or will not suffer structural failure. In this study, an optimization procedure is proposed to minimize the maximum value of Tsai-Wu of laminated composite tubes subject to axial loading. Artificial neural networks and genetic algorithms are chosen as optimization tools. The results of this study show that the developed algorithm converges faster. Then, the maximum Tsai-Wu value is used as the objective function and the fiber orientations are the constraints in the optimization process. The results yielded by them are compared and discussed. Optimal results are compared with respect to the usual initial design. The design approach is recommended for structures where composites are the key load-carrying members such as orthopedic prosthesis.

Notes

Acknowledgments

The authors would like to acknowledge the financial support from the Brazilian agency CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico and CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    C.A.R. Brito Jr., E.M. Bezerra, L.C. Pardini, A.C. Ancelotti Jr., M.S. Pereira, E. Barros, L.R. Camargo, Redes neurais artificiais aplicadas para predição do comportamento dinâmico-mecânico de compósitos de matriz epóxi reforçados com fibras de carbono. Revista matéria 12(2), 346–357 (2007)CrossRefGoogle Scholar
  2. 2.
    F.C. Campbell, Structural Composite Materials (ASM Internacional, New York, 2010)Google Scholar
  3. 3.
    E.K.P. Chong, S.H. Zak, An Introduction to Optimization (Wiley, Etobicoke, 2001)Google Scholar
  4. 4.
    D.I.G. Costa, E.L. Albuquerque, A. Reis, G. Panosso, P. Sollero, Análise numérica de falhas em laminados usando um critério baseado em fenômenos físicos. Mecànica Computaciona 29(51), 5173–5187 (2010)Google Scholar
  5. 5.
    I.M. Daniel, O. Ishai, I.M.I. Daniel, Engineering Mechanics of Composite Materials, vol. 3 (Oxford University Press, New York, 1994), p. 256Google Scholar
  6. 6.
    A. De Fenza, A. Sorrentino, P. Vitiello, Application of Artificial Neural Networks and Probability Ellipse methods for damage detection using Lamb waves. Compos. Struct. 133, 390–403 (2015)CrossRefGoogle Scholar
  7. 7.
    Kalyanmoy Deb, An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)CrossRefGoogle Scholar
  8. 8.
    Hubert Debski, Jozef Jonak, Failure analysis of thin-walled composite channel section columns. Compos. Struct. 132, 567–574 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Deep, K.P. Singh, M.L. Kansal, C. Mohan, A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)Google Scholar
  10. 10.
    S. Haykin, Neural Networks and Learning Machines (Pearson, New York, 2009)Google Scholar
  11. 11.
    A.K. Kaw, Mechanics of Composite Materials (CRC Press, Boca Raton, 2005)Google Scholar
  12. 12.
    M. Koc, F.O. Sonmez, N. Ersoy, K. Cinar, Failure behavior of composite laminates under four-point bending. J. Compos. Mater. 50(26), 3679–3697 (2016)CrossRefGoogle Scholar
  13. 13.
    A.J. Kolios, Stefano Proia, Evaluation of the reliability performance of failure criteria for composite structures. World J. Mech. 2(03), 162 (2012)CrossRefGoogle Scholar
  14. 14.
    Z.L. Kovács, Redes neurais artificiais (Editora Livraria da Fisica, Sao Paulo, 2002)Google Scholar
  15. 15.
    U.K. Mallela, A. Upadhyay, Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. Thin-Walled Struct. 102, 158–164 (2016)CrossRefGoogle Scholar
  16. 16.
    A.T.D. Martins, Projeto e fabricação de tubos compósitos em fibras de carbono/epóxi para próteses transtibiais por moldagem com bladder. Dissertação (Mestrado), Engenharia Mecânica, Universidade Federal de Itajubá (2015)Google Scholar
  17. 17.
    S. Mazumdar, Composites manufacturing materials, product, and process engineering (CRC Press, Boca Raton, 2001)CrossRefGoogle Scholar
  18. 18.
    M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998)Google Scholar
  19. 19.
    D.C. Montgomery, E.A. Peck, G. Geoffrey-Vining, Introduction to Linear Regression Analysis (Wiley, Hoboken, 2015)Google Scholar
  20. 20.
    P. Selva, O. Cherrier, V. Budinger, F. Lachaud, J. Morlier, Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks. Eng. Struct. 56, 794–804 (2013)CrossRefGoogle Scholar
  21. 21.
    S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)CrossRefGoogle Scholar
  22. 22.
    C. Velmurugan, V. Muthukumaran, K. Ragupathy, S. Ragunath, Modeling volume loss of heat treated Al 6061 composites using an artificial neural network. Procedia Mater. Sci. 5, 31–40 (2014)CrossRefGoogle Scholar
  23. 23.
    G.Z. Voyiadjis, P.I. Kattan, Mechanics of composite materials with MATLAB (Springer, USA, 2005)Google Scholar
  24. 24.
    X.-S. Yang, Engineering optimization: an introduction with metaheuristic applications (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  25. 25.
    B. Yegnanarayana, Artificial Neural Networks (PHI Learning Pvt. Ltd., New York, 2009)Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Guilherme Ferreira Gomes
    • 1
  • Camila Aparecida Diniz
    • 1
  • Sebastião Simões da CunhaJr.
    • 1
  • Antonio Carlos AncelottiJr.
    • 1
  1. 1.Mechanical Engineering InstituteFederal University of ItajubáItajubáBrazil

Personalised recommendations