Journal of Failure Analysis and Prevention

, Volume 16, Issue 5, pp 811–820 | Cite as

Life Assessment and Crack Growth Properties of Laser Cut Dual-Phase Steel

Technical Article---Peer-Reviewed

Abstract

The effect of laser cut-edges has been studied as a method for producing an optimum fatigue life performance of advanced high-strength steel. During this study, DP600 high-strength steel laser cut-edges have been fatigue tested under S-N and E-N fatigue loading regimes. The cut-edge surface characteristic properties and internal metallurgical alterations have been observed to directly influence fatigue life of the steel. This paper has investigated the crack initiation and growth properties of the initial crack to mode two. It is shown that alterations in the surface properties can be harnessed so that beneficial properties can be produced to retard crack initiation. It was determined that the laser power and cutting speed can be used independently to produce the appropriate balance between microstructure and optimum surface properties. Optimal fatigue lives were attained by minimizing the laser cut-edge surface damage, maintaining the formation of wide area striations and by forming a uniform layer of martensitic material close to the cut-edge. These results suggest that laser cutting can be used to enhance the fatigue life to failure of fracture-sensitive steel grades.

Keywords

Laser processing Laser cutting Fatigue life Crack growth 

List of Symbols

A

Elongation to failure

AHSS

Advanced high-strength steel

E-N

Strain life

HAZ

Heat-affected zone

HCF

High cycle fatigue

HV

Vickers hardness

kPa

Kilopascal

Ra

Arithmetic mean of departures from the mean line

Rq

RMS of the R a

Rp

Maximum height of profile above the mean line

Rv

Maximum depth of profile below the mean line

Rt

Total R pR v

S-N

Stress life

Wt

Weight

Notes

Acknowledgments

The present research was funded by a grant from the Engineering and Physical Sciences Research Council (EPSRC). The author wishes to thank the support of Tata Steel during the pursuit of this research.

References

  1. 1.
    S. Mullick, A.K. Agrawal, A.K. Nath, Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser. Opt. Laser Technol. 81(1), 168–179 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Wandera, A. Salminen, V. Kujanpaa, Inert gas cutting of thick-section stainless steel and medium-section aluminium using a high power fiber laser. J. Laser Appl. 21(3), 154–161 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Poprawe, W. Schulz, R. Schmitt, Hydrodynamics of material removal by melt expulsion: perspectives of laser cutting and drilling. Phys. Proc. 5(1), 1–18 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Wandera, V. Kujanpaa, Characterization of the melt removal rate in laser cutting of thick-section stainless steel. J. Laser Appl. 22(2), 62–70 (2010)CrossRefGoogle Scholar
  5. 5.
    L.D. Scintilla, L. Tricarico, A. Mahrle, A. Wetzig, E. Beyer, Experimental investigation on the cut front geometry in the inert gas laser fusion cutting with disk and CO2 lasers. 30th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2011, pp. 40–49 (2011)Google Scholar
  6. 6.
    D.J. Thomas, The influence of the laser and plasma traverse cutting speed process parameter on the cut-edge characteristics and durability of Yellow Goods vehicle applications. J. Manuf. Process. 13(2), 120–132 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Cicero, T. García, J.A. Álvarez, A. Martín-Meizoso, J. Aldazabal, A. Bannister, A. Klimpel, Definition and validation of Eurocode 3 FAT classes for structural steels containing oxy-fuel, plasma and laser cut holes. Int. J. Fatigue 87, 50–58 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Powell, D. Petring, R.V. Kumar, S.O. Al-Mashikhi, A.F.H. Kaplan, K.T. Voisey, Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction. J. Phys. D: Appl. Phys. 42(1), Article No. 015504.Google Scholar
  9. 9.
    B.S. Yilbas, A.F.M. Arif, Laser cutting of steel and thermal stress development. Opt. Laser Technol. 43(4), 830–837 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Lamikiz, L.N.L.D. Lacalle, J.A. Sánchez, D.D. Pozo, J.M. Etayo, J.M. López, CO2 laser cutting of advanced high strength steels (AHSS). Appl. Surf. Sci. 242(3–4), 362–368 (2005)CrossRefGoogle Scholar
  11. 11.
    B.T. Rao, R. Kaul, P. Tiwari, A.K. Nath, Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt. Lasers Eng. 43(12), 1330–1348 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Powell, S.O. Al-Mashikhi, A.F.H. Kaplan, K.T. Voisey, Fibre laser cutting of thin section mild steel: an explanation of the ‘striation free’ effect. Opt. Lasers Eng. 49(8), 1069–1075 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Lara, I. Picas, D. Casellas, Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J. Mater. Process. Technol. 213(11), 1908–1919 (2013)CrossRefGoogle Scholar
  14. 14.
    E. Nagels, J.R. Duflou, J. Van Humbeeck, The influence of sulphur content on the quality of laser cutting of steel. J. Mater. Process. Technol. 194(1–3), 159–162 (2007)CrossRefGoogle Scholar
  15. 15.
    B.S. Yilbas, C. Karatas, I. Uslan, O. Keles, Y. Usta, Z. Yilbas, M. Ahsan, Wedge cutting of mild steel by CO2 laser and cut-quality assessment in relation to normal cutting. Opt. Lasers Eng. 46(10), 777–784 (2008)CrossRefGoogle Scholar
  16. 16.
    L.D. Scintilla, L. Tricarico, Estimating cutting front temperature difference in disk and CO2 laser beam fusion cutting. Opt. Laser Technol. 44(5), 1468–1479 (2012)CrossRefGoogle Scholar
  17. 17.
    H.A. Eltawahni, M. Hagino, K.Y. Benyounis, T. Inoue, A.G. Olabi, Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L. Opt. Laser Technol. 44(4), 1068–1082 (2012)CrossRefGoogle Scholar
  18. 18.
    L. Li, M. Sobih, P.L. Crouse, Striation-free laser cutting of mild steel sheets. CIRP Ann.: Manuf. Technol. 56(1), 193–196 (2007)CrossRefGoogle Scholar
  19. 19.
    K. Kheloufi, E.H. Amara, Numerical investigation of the effect of some parameters on temperature field and kerf width in laser cutting process. Phys. Proc. 39, 872–880 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Lamikiz, L.N. López de Lacalle, J.A. Sánchez, D. del Pozo, J.M. Etayo, J.M. López, CO2 laser cutting of advanced high strength steels (AHSS). Appl. Surf. Sci. 242(3–4), 362–368 (2005)CrossRefGoogle Scholar
  21. 21.
    D.J. Thomas, M.T. Whittaker, G.W. Bright, Y. Gao, The influence of mechanical and CO2 laser cut-edge characteristics on the fatigue life performance of high strength automotive steels. J. Mater. Process. Technol. 211, 263–274 (2011)CrossRefGoogle Scholar
  22. 22.
    D.J. Thomas, Finite element analysis of laser cut edge beam section for high stress intensity structural performance. J. Fail. Anal. Prev. 16, 562–575 (2016)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations