Journal of Failure Analysis and Prevention

, Volume 10, Issue 5, pp 416–426 | Cite as

Scale Formation by Calcium-Precipitating Bacteria in Cooling Water System

  • S. Maruthamuthu
  • P. Dhandapani
  • S. Ponmariappan
  • S. Sathiyanarayanan
  • S. Muthukrishnan
  • N. Palaniswamy
Technical Article---Peer-Reviewed

Abstract

Scale formation in heat exchanger tube reduces heat transfer efficiency and enhances corrosion. Scale formation in cooling water is due to many factors including pH, temperature, salt etc. In this study, microbiological aspects of scale formation and their role on corrosion are presented. The calcium precipitating bacteria (CPB) were isolated from the scales collected from heat exchanger tube in a gas turbine power station using B4 medium. The dominant CPB was isolated and identified using 16s rRNA sequencing, and the phylogenetic analysis reveals that the predominant bacteria were Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551). The nature of crystal deposits of bacteria has been explained. The corrosion behavior of CPB on mild steel was studied by the electrochemical method (polarization and impedance), and the biogenic calcium scale formations in CPB were analyzed by XRD method. The scale formation by bacteria reduced the cathodic corrosion current, where resistance was lower in the presence of bacteria. It is claimed that the CPB is one of the causative factor for scale formation and corrosion in cooling water system.

Keywords

Cooling water system Heat exchangers tube Scale formation Calcium precipitating bacteria 

Notes

Acknowledgments

The authors wish to thank Mr. R. Ravishanker and Miss. S. Krithika of Instrumentation Division, CECRI, for their assistance in the utilization of SEM and XRD facility.

References

  1. 1.
    Castanier, S., LeMetayer-Levrel, G., Perthuisot, J.P.: Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sedim. Geol. 126, 9–23 (1999)CrossRefGoogle Scholar
  2. 2.
    Erlich, H.L.: Geomicrobiology: its significance for geology. Earth Sci. Rev 45, 45–60 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Kile, D.E., Eberl, D.D., Hoch, A.R.V., Reddy, M.M.: An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochim. Cosmochim. Acta 64, 2937–2950 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Beveridge, T.J., Meloche, J.D., Fyfe, W.S., Murray, R.G.E.: Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl. Environ. Microbiol. 45, 1094–1108 (1983)PubMedGoogle Scholar
  5. 5.
    Ghiorse, W.C.: Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 38, 515–550 (1984)PubMedGoogle Scholar
  6. 6.
    Knoll, A.H., Swett, K.: Calcareous deposition during the late Proterozoic era: an example from Spitsbergen. Am. J. Sci. 141, 104–132 (1990)Google Scholar
  7. 7.
    Ruiz, C., Monteoliva-Sanches, M., Huertas, F., Ramos-Cormenzana, A.: Calcium carbonate precipitation by several species of Myxococcus. Chemosphere 17, 835–838 (1988)CrossRefGoogle Scholar
  8. 8.
    Rivadeneyra, M.A., Delgado, R., Del Moral, A., Ferrer, R.M., Ramos-Cormenzana, A.: Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol 13, 197–204 (1994)CrossRefGoogle Scholar
  9. 9.
    Kajander, E.O., Ciftcioglu, N.: Nanobacteria : an alternative mechanism for pathogenic intra and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95, 8274–8279 (1998)CrossRefADSPubMedGoogle Scholar
  10. 10.
    Folk, R.: SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J. Sedim. Petrol. 63, 990–999 (1993)Google Scholar
  11. 11.
    Liu, T., Li, X., Wang, H., Sun, X.: Formation process of mixed fouling of microbe and CaCO3 in water systems. Chem. Eng. J. 88, 249–254 (2002)CrossRefGoogle Scholar
  12. 12.
    Gollapudi, U.K., Knutson, C.L., Bang, S.S., Islam, M.R.: A new method for controlling leaching through permeable channels. Chemosphere 30, 695–705 (1995)CrossRefGoogle Scholar
  13. 13.
    Douglas, S., Beveridge, T.J.: Mineral formation by bacteria in natural microbial communities. FEMS. Microbiol. Ecol. 26, 79–88 (1998)CrossRefGoogle Scholar
  14. 14.
    Yates, K.K., Robbins, L.L.: Radioisotope tracer studies of inorganic carbon and Ca in microbiologically derived CaCO3. Geochim. Cosmochim. Acta 63, 129–136 (1999)CrossRefADSGoogle Scholar
  15. 15.
    Ferrer, R.M., Quevedo-Sarmiento, J., Rivadeneyra, M.A., Bejar, V., Delgado, R., Ramos-Cormenzana, A.: Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr. Microbiol. 17, 221–227 (1988)CrossRefGoogle Scholar
  16. 16.
    Stocks-Fischer, S., Galinat, J.K., Bang, S.S.: Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571 (1999)CrossRefGoogle Scholar
  17. 17.
    Hammes, F., Verstraete, W.: Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 1, 3–7 (2002)CrossRefGoogle Scholar
  18. 18.
    Baskar, S., Baskar, R., Mauclaire, L., Mckenzie, A.J.: Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. 90, 58–64 (2006)Google Scholar
  19. 19.
    Chen, L., Shen, Y., Xie, A., Huang, B., Jia, R., Guo, R., Tang, W.: Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst. Growth Des. 9, 743–754 (2009)CrossRefGoogle Scholar
  20. 20.
    Ercole, C., Cacchio, P., Botta, A.L., Centi, V., Lepidi, A.: Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc. Microanal. 13, 42–50 (2007)CrossRefADSPubMedGoogle Scholar
  21. 21.
    Sone Eli, D., Weiner, S., Addadi, L.: Biomineralization of limpet teeth: a cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428–444 (2007)CrossRefPubMedGoogle Scholar
  22. 22.
    Holt, J.G., Kreig, N.R., Sneath, P.H.A., Stanely, J.T.: In: Williams, S.T. (ed.) Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore (1994)Google Scholar
  23. 23.
    Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3, 208 (1961)CrossRefGoogle Scholar
  24. 24.
    Reddy, G.S.N., Aggarwal, R.K., Matsumoto, G.I., Shivaji, S.: Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int. J. Syst. Evol. Microbiol. 50, 1553 (2000)PubMedGoogle Scholar
  25. 25.
    Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111 (1980)CrossRefPubMedGoogle Scholar
  26. 26.
    Felsentein, J.: PHYLIP (Phylogeny Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle, USA (1993)Google Scholar
  27. 27.
    Morita, R.Y.: Calcite precipitation by marine bacteria. Geomicrobiol. J. 2, 63–82 (1980)CrossRefGoogle Scholar
  28. 28.
    Boquet, E., Boronat, A., Ramos-Cormenzana, A.: Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature (London) 246, 527–529 (1973)CrossRefADSGoogle Scholar
  29. 29.
    Kramer, G., Klingler, H.C., Steiner, G.E.: Role of bacteria in the development of kidney stones. Curr. Opin. Urol. 10, 35–38 (2000)CrossRefPubMedGoogle Scholar
  30. 30.
    McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D., Maechling, C.R., Zare, R.N.: Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996)CrossRefADSPubMedGoogle Scholar
  31. 31.
    Vali, H., McKee, M.D., Çiftçioglu, N., Sears, K., Plows, F., Chevet, E., Ghiabi, P., Plavsic, M., Kajander, E.O., Zare, R.N.: Nanoforms: a new type of protein-associated mineralization. Geochim. Cosmochim. Acta 65, 63–74 (2001)CrossRefADSGoogle Scholar
  32. 32.
    Fujita, Y., Ferris, E.G., Lawson, R.D., Colwell, F.S., Smith, R.W.: Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17, 305–318 (2000)CrossRefGoogle Scholar
  33. 33.
    Braissant, O., Verrecchia, E.P., Aragno, M.: Is the contribution of bacteria to terrestrial carbon budget grately understimated? Nat. Sci. (Naturwissenschaften) 89, 366–370 (2002). GermanCrossRefADSGoogle Scholar
  34. 34.
    Knorre, H., Krumbein, W.: Bacterial calcification. In: Riding, R.R., Awramik, S.M. (eds.) Microbial Sediments, pp. 25–31. Springer-Verlag, Berlin (2000)Google Scholar
  35. 35.
    McConnaughey, T.A., Whelan, F.F.: Calcification generates protons for nutrient an bicarbonate uptake. Earth Sci. Rev. 42, 95–117 (1997)CrossRefADSGoogle Scholar
  36. 36.
    Lian, B., Hu, Q., Chen, J., Ji, J., Teng, H.H.: Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 70, 5522–5535 (2006)CrossRefADSGoogle Scholar
  37. 37.
    Tourney, J., Ngwenya, B.T.: Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem. Geol. 262, 138–146 (2009)CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • S. Maruthamuthu
    • 1
  • P. Dhandapani
    • 1
  • S. Ponmariappan
    • 2
  • S. Sathiyanarayanan
    • 1
  • S. Muthukrishnan
    • 1
  • N. Palaniswamy
    • 1
  1. 1.Council of Scientific & Industrial Research (CSIR)Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Biotechnology DivisionDefence R&D EstablishmentGwaliorIndia

Personalised recommendations