Advertisement

Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode

  • Rodion ZhukovskiiEmail author
  • Christophe Chazelas
  • Armelle Vardelle
  • Vincent Rat
Peer Reviewed
  • 63 Downloads

Abstract

Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.

Keywords

Electric arc electrode erosion modeling magnetic field plasma jet stability plasma spray plasma torch 

Notes

Acknowledgments

The authors would like to thank Alexander Barth and Hartmut Koschnitzke, Oerlikon Metco Wohlen, Switzerland, Bernd Distler and Jose Colmenares, Oerlikon Metco, Westbury, USA, for valuable discussion, Yvan Fournier, EDF R&D, Chatou, France, for help with Code_Saturne and Frederic Bernaudeau and Nicolas Calvé, IRCER, for their technical help with the computers.

References

  1. 1.
    Z. Duan and J. Heberlein, Arc Instabilities in a Plasma Spray Torch, J. Therm. Spray Technol., 2002, 11, p 44-57CrossRefGoogle Scholar
  2. 2.
    E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol., 2006, 15, p 524-530CrossRefGoogle Scholar
  3. 3.
    J.F. Coudert, V. Rat, and D. Rigot, Influence of Helmholtz Oscillations on Arc Voltage Fluctuations in a DC Plasma Spraying Torch, J. Phys. D Appl. Phys., 2007, 40, p 7357-7366CrossRefGoogle Scholar
  4. 4.
    V. Rat and J.F. Coudert, Improvement of Plasma Spray Torch Stability by Controlling Pressure and Voltage Dynamic Coupling, J. Therm. Spray Technol., 2011, 20, p 20-28CrossRefGoogle Scholar
  5. 5.
    M.F. Zhukov and I.M. Zasypkin, Thermal Plasma Torches, Cambridge Int Science Publishing, Cambridge, 2007Google Scholar
  6. 6.
    M.F. Zhukov, Electric arc Plasma Torches, Thermophysics Institute, Siberian Division of the Academy of Sciences, USSR, Novosibirsk, 1980 (in Russian)Google Scholar
  7. 7.
    R. Chidambaram Seshadri and R.S. Sampath, Characteristics of Conventional and Cascaded Arc Plasma Spray-Deposited Ceramic Under Standard and High-Throughput Conditions, J. Therm. Spray Technol., 2019, 28, p 690-705CrossRefGoogle Scholar
  8. 8.
    K. Bobzin and M. Öte, Modeling Multi-Arc Spraying Systems, J. Therm. Spray Technol., 2016, 25, p 920-932CrossRefGoogle Scholar
  9. 9.
    K.D. Landes, M. Dzulko, E. Theophile, and J. Zierhut, New Developments in DC Plasma Torches, High Temp. Mater. Process., 2002, 6(3), p 10CrossRefGoogle Scholar
  10. 10.
    P. Chyou and E. Pfender, Modeling of Plasma Jets with Superimposed Vortex Flow, Plasma Chem. Plasma Process., 1989, 9(2), p 291-32811CrossRefGoogle Scholar
  11. 11.
    C.L. Felipini and M.M. Pimenta, Some Numerical Simulation Results of Swirling Flow in D.C. Plasma Torch, J. Phys. Conf. Ser., 2015, 591, p 012038CrossRefGoogle Scholar
  12. 12.
    R. Westhoff and J. Szekely, Heat Flow, and Electromagnetic Phenomena in a Nontransferred Arc Plasma Torch, J. Appl. Phys., 1991, 70(7), p 3455-3466CrossRefGoogle Scholar
  13. 13.
    R.N. Szente, R.J. Munz, and M.G. Drouet, Arc Velocity and Cathode Erosion Rate in a Magnetically Driven Arc Burning in Nitrogen, J. Phys. D Appl. Phys., 1988, 21(6), p 909-913CrossRefGoogle Scholar
  14. 14.
    P. Kotalik and H. Nishiyama, An Effect of Magnetic Field on Arc Plasma Flow, IEEE Trans. Plasma Sci., 2002, 30(1), p 160-161CrossRefGoogle Scholar
  15. 15.
    J.M. Park, K.S. Kim, T.H. Hwang, and S.H. Hong, Three-Dimensional Modeling of Arc Root Rotation by External Magnetic Field in Non-Transferred Thermal Plasma Torches, IEEE Trans. Plasma Sci., 2004, 32(2), p 479-487CrossRefGoogle Scholar
  16. 16.
    M. Baeva and D. Uhrlandt, Non-Equilibrium Simulation of the Spatial and Temporal Behavior of a Magnetically Rotating Arc in Argon, Plasma Sources Sci Technol., 2011, 20(3), p 035008CrossRefGoogle Scholar
  17. 17.
    V. Nemchinsky, A Method to Reduce Electrode Erosion in a Magnetically Driven Rotating Arc, IEEE Trans. Plasma Sci., 2016, 44(12), p 3474-3478CrossRefGoogle Scholar
  18. 18.
    A.S. Prince, R.C. Bunker, and T. Lawrence, Plasma torch testing for thermostructural evaluation of rocket motor nozzle materials, in 25th Joint Propulsion Conference, Monterey, CA, July 10-13, 1989, p. 6Google Scholar
  19. 19.
    K. Bobzin, M. Öte, M.A. Knoch, H. Heinemann, S. Zimmermann, and J. Schein, Influence of External Magnetic Fields on the Coatings of a Cascaded Plasma Generator, IOP Conf. Ser. Mater. Sci. Eng., 2019, 480, p 012004CrossRefGoogle Scholar
  20. 20.
    R. Zhukovski, C. Chazelas, A. Vardelle, V. Rat, and B. Distler, Effect of Boundary Conditions on Reliability of DC Plasma Models, submitted to J. Therm. Spray Technol. Google Scholar
  21. 21.
    Guggenheim L, Schwenk A, Zimmermann S, Schein J, and Landes K Untersuchungen zum Einfluss von Permanentmagneten auf das physikalische Verhalten von kaskadierten, wandstabilisierten Lichtbögen und keramisch gespritzten Schichten, GTV Kolloquium Thermisches Spritzen & Laser Cladding (Luckenbach, 7.09.2018) ed K Nassenstein and K von Niessen, 2018, pp 95-101Google Scholar
  22. 22.
    D. Halliday, Fundamentals of Physics, Vol 1, Wiley, New York, 2005Google Scholar
  23. 23.
    M. Alaya, C. Chazelas, and A. Vardelle, Parametric Study of Plasma Torch Operation Using a MHD Model Coupling the Arc and Electrodes, J. Therm. Spray Technol., 2015, 24(1-2), p 3-10Google Scholar
  24. 24.
    J.P. Trelles, C. Chazelas, A. Vardelle, and J.V.R. Heberlein, Arc Plasma Torch Modeling, J. Therm. Spray Technol., 2009, 18(5-6), p 728CrossRefGoogle Scholar
  25. 25.
    M. Shigeta, Turbulence Modelling of Thermal Plasma Flow, J. Phys. D Appl. Phys., 2016, 49, p 493001CrossRefGoogle Scholar
  26. 26.
    Code_Saturne https://www.code-saturne.org/cms/ Accessed 12 June 2019
  27. 27.
    P. Freton, J.J. Gonzalez, M. Masquere, and F. Reichert, Magnetic Field Approaches in DC Thermal Plasma Modelling, J. Phys. D Appl. Phys., 2011, 44, p 202-345CrossRefGoogle Scholar
  28. 28.
    Code Saturne 5.0.0 Theory Guide, EDF R&D, 2017, p 393-398, in French https://www.code-saturne.org/cms/sites/default/files/docs/5.0/theory.pdf Accessed 12 June 2019
  29. 29.
    A. Gleizes, J.J. Gonzalez, and P. Freton, Thermal Plasma Modelling, J. Phys. D Appl. Phys., 2005, 38, p R153CrossRefGoogle Scholar
  30. 30.
    Y. Abdo, V. Rohani, F. Cauneau, and L. Fulcheri, New Perspectives on the Dynamics of AC and DC Plasma Arcs Exposed to Cross-Fields, J. Phys. D Appl. Phys., 2017, 50(6), p 065203CrossRefGoogle Scholar
  31. 31.
    P. Fauchais, J.V.R. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, NewYork, 2014, p 402CrossRefGoogle Scholar
  32. 32.
    V. Nemchinsky, Arc Discharge Anode Reattachment: Simple Model, IEEE Trans. Plasma Sci., 2014, 42, p 12Google Scholar
  33. 33.
    C. Chazelas, J.P. Trelles, and A. Vardelle, The Main Issues to Address in Modeling Plasma Spray Torch Operation, J. Therm. Spray Technol., 2017, 26(1-2), p 3-11CrossRefGoogle Scholar
  34. 34.
    J.P. Trelles, J.V.R. Heberlein, and E. Pfender, Non-equilibrium Modelling of Arc Plasma Torches, J. Phys. D Appl. Phys., 2007, 40(19), p 5937-5952CrossRefGoogle Scholar
  35. 35.
    P. Freton, J.J. Gonzalez, Z. Ranarijaona, and J. Mougenot, Energy Equation Formulations for Two Temperature Modelling of ‘Thermal’ Plasmas, J. Phys. D Appl. Phys., 2012, 45, p 465206CrossRefGoogle Scholar
  36. 36.
    J.P. Trelles and J.S. Modirkhazeni, Variational Multiscale Method for Nonequilibrium Plasma Flows, Comput. Methods Appl. Mech. Eng., 2014, 282, p 87-131CrossRefGoogle Scholar
  37. 37.
    P. Liang and R. Groll, Numerical Study of Plasma-Electrode Interaction During Arc Discharge in a DC Plasma Torch, IEEE Trans. Plasma Sci., 2018, 46(2), p 363-372CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Rodion Zhukovskii
    • 1
    Email author
  • Christophe Chazelas
    • 1
  • Armelle Vardelle
    • 1
  • Vincent Rat
    • 1
  1. 1.Université de Limoges, IRCER, UMR 7315LimogesFrance

Personalised recommendations