Advertisement

Parametric Analysis and Modeling for the Porosity Prediction in Suspension Plasma-Sprayed Coatings

  • Yongli ZhaoEmail author
  • Yan Wang
  • François Peyraut
  • Marie-Pierre Planche
  • Jan Ilavsky
  • Hanlin Liao
  • Ghislain Montavon
  • Audrey Lasalle
  • Alain Allimant
Peer Reviewed
  • 54 Downloads

Abstract

The porous architecture of suspension plasma-sprayed coatings has a significant influence on the coating performances and thus should be properly designed for the intended applications. In this study, YSZ coatings were manufactured by suspension plasma spray (SPS), and a parametric study was performed with five different process parameters: suspension mass load, original powder particle size, substrate surface topology, spray distance, and spray step. Afterward, the porosity of the as-prepared coatings was investigated by imaging and x-ray transmission technique. A multivariate analysis on the collected experimental data was carried out. The results indicated that: (1) The total porosity of SPS coatings increases with the decrease in suspension mass load, while it shows the opposite trend by decreasing the spray distance, original powder particle size, substrate roughness, and spray step; (2) The main factor affecting coating total porosity is spray distance. Finally, a predictive model for coating total porosity was developed and was verified by experiments. Control of total porosity by using the predictive model was presented and explained as well.

Keywords

Multivariate analysis Porosity Predictive model Process parameter Suspension plasma spray 

Notes

Acknowledgments

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research was also sponsored by startup research foundation of Shanghai University of Engineering Science No. 201980.

References

  1. 1.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440CrossRefGoogle Scholar
  2. 2.
    U. Klement, J. Ekberg, and S.T. Kelly, 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy, J. Therm. Spray Technol., 2017, 26, p 456-463CrossRefGoogle Scholar
  3. 3.
    F.-L. Toma, A. Potthoff, L.-M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152CrossRefGoogle Scholar
  4. 4.
    Y. Zhao, Z. Yu, M.P. Planche, A. Lasalle, A. Allimant, G. Montavon, and H. Liao, Influence of Substrate Properties on the Formation of Suspension Plasma Sprayed Coatings, J. Therm. Spray Technol., 2018, 27(1), p 73-83CrossRefGoogle Scholar
  5. 5.
    Y. Zhao, F. Peyraut, M.P. Planche, J. Ilavsky, H. Liao, A. Lasalle, A. Allimant, and G. Montavon, Experiments, Statistical Analysis, and Modeling to Evaluate the Porosity Influence in SPS Coatings, J. Therm. Spray Technol., 2019, 28(1), p 76-86CrossRefGoogle Scholar
  6. 6.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829CrossRefGoogle Scholar
  7. 7.
    P. Fauchais, V. Rat, J.-F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202(18), p 4309-4317CrossRefGoogle Scholar
  8. 8.
    T. Tesar, R. Musalek, J. Medricky, J. Kotlan, F. Lukac, Z. Pala, P. Ctibor, T. Chraska, S. Houdkova, V. Rimal, and N. Curry, Development of Suspension Plasma Sprayed Alumina Coatings with High Enthalpy Plasma Torch, 2017, Surf. Coatings Technol., 2017, 325, p 277-288CrossRefGoogle Scholar
  9. 9.
    G. Darut, H. Ageorges, A. Denoirjean, and P. Fauchais, Tribological Performances of YSZ Composite coatings Manufactured by Suspension Plasma Spraying, Surf. Coat. Technol., 2013, 217, p 172-180CrossRefGoogle Scholar
  10. 10.
    P. Sokolowski, P. Nylen, R. Musalek, L. Latka, S. Kozerski, D. Dietrich, T. Lampke, and L. Pawlowski, The Microstructural Studies of Suspension Plasma Sprayed Zirconia Coatings with the Use of High-Energy Plasma Torches, Surf. Coatings Technol., 2017, 318, p 250-261CrossRefGoogle Scholar
  11. 11.
    P. Fauchais and A. Vardelle, Solution and suspension plasma spraying of nanostructure coatings, Advanced Plasma Spray Applications, H. Jazi, Ed., InTech, Chennai, 2012, p 149-188Google Scholar
  12. 12.
    A. Bacciochini, J. Ilavsky, G. Montavon, A. Denoirjean, F. Ben-ettouil, S. Valette, P. Fauchais, and K. Wittmann-Ténèze, Quantification of Void Network Architectures of Suspension Plasma-Sprayed (SPS) Yttria-Stabilized Zirconia (YSZ) Coatings Using Ultrasmall-Angle X-ray Scattering (USAXS), Mater. Sci. Eng. A, 2010, 528(1), p 91-102CrossRefGoogle Scholar
  13. 13.
    A. Bacciochini, F. Ben-Ettouil, E. Brousse, J. Ilavsky, G. Montavon, A. Denoirjean et al., Quantification of Void Networks of As-Sprayed and Annealed Nanostructured Yttria-Stabilized Zirconia (YSZ) Deposits Manufactured by Suspension Plasma Spraying, Surf. Coating. Technol., 2010, 205(3), p 683-689CrossRefGoogle Scholar
  14. 14.
    J. Ekberg, L. Nordstierna, and U. Klement, Porosity Investigation of Yttria-Stabilized Zirconia Topcoats Using NMR Cryoporometry, Surf. Coatings Technol., 2017, 315, p 468-474CrossRefGoogle Scholar
  15. 15.
    J. Ilavsky, F. Zhang, R.N. Andrews, I. Kuzmenko, P.R. Jemian, L.E. Levine, and A.J. Allen, Development of Combined Microstructure and Structure Characterization Facility for In Situ and Operando Studies at the Advanced Photon Source, J. Appl. Crystallogr., 2018, 51(3), p 867-882CrossRefGoogle Scholar
  16. 16.
    D.T. Cromer and D.A. Liberman, Anomalous Dispersion Calculations Near to and on the Long-Wavelength Side of an Absorption Edge, Acta Cryst., 1981, A37, p 267-268CrossRefGoogle Scholar
  17. 17.
    A. Bacciochini, G. Montavon, J. Ilavsky, A. Denoirjean, and P. Fauchais, Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~ 50 nm), J. Therm. Spray Technol., 2010, 19(1–2), p 198-206CrossRefGoogle Scholar
  18. 18.
    O. Tingaud, A. Grimaud, A. Denoirjean, G. Montavon, V. Rat, J.F. Coudert, P. Fauchais, and T. Chartier, Suspension Plasma-Sprayed Alumina Coating Structures: operating Parameters Versus Coating Architecture, J. Therm. Spray Technol., 2008, 17, p 662-670CrossRefGoogle Scholar
  19. 19.
    J. Celko, 9 - Normalization, in Joe Celko’s SQL for Smarties, 4th ed., Morgan Kaufmann, Boston, 2011, p 181-214CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Yongli Zhao
    • 1
    • 2
    Email author
  • Yan Wang
    • 2
  • François Peyraut
    • 2
  • Marie-Pierre Planche
    • 2
  • Jan Ilavsky
    • 3
  • Hanlin Liao
    • 2
  • Ghislain Montavon
    • 2
  • Audrey Lasalle
    • 4
  • Alain Allimant
    • 4
  1. 1.School of Mechanical and Automotive EngineeringShanghai University of Engineering ScienceShanghaiChina
  2. 2.ICB, UMR 6303, CNRSUniversité de Bourgogne Franche-Comté, UTBMBelfortFrance
  3. 3.Advanced Photon Source, Argonne National LaboratoryArgonneUSA
  4. 4.Saint-Gobain CREECavaillonFrance

Personalised recommendations